
WEB SHELL
Learning theLearning the

by Pablo Collins

AESTIVA
P R E S S

Pablo_Title_Page.qxd 11/1/04 12:29 PM Page 1

Learning the Web Shell

Copyright © 2004 Pablo Collins

All rights reserved. Printed in the United States of America. No part of this book may be used or
reproduced in any form or by any method, or stored in an electronic storage system, without prior written
permission of the publisher except in the case of brief quotations in critical articles and reviews. Copying
any part of this book for any purpose other than your own personal use is a violation of United States
copyright law.

Aestiva Press
24430 Hawthorne Blvd.
Torrance, CA 90505

Sales information: sales@aestiva.com
Publishing website: htmlos.com
The HTML/OS companion Web site: http://dev.aestiva.com/advanced/

ISBN: 0-9749081-1-8

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents
of this book, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any purpose. Neither the author nor Aestiva Press and its dealers and
distributors shall be liable to the purchaser or any other person or entity with respect to liability by this
book.

Trademark and service mark terms used in this book are the property of the trademark holders. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

pablo_copyright_page.qxd 11/1/04 12:53 PM Page 2

Dedication
This book is dedicated to my wife, Shoshana, and our daughter, Chava, who were

graciously supportive of my efforts to write this book, and to Max Annavedder, whose
friendship is sorely missed.

pablo_frontmatter.qxd 11/1/04 12:36 PM Page 3

About the Author
Pablo Collins was born in Montevideo, Uruguay and now lives in Westwood, CA with his
wife and their one-year-old daughter. He bikes a few blocks to and from work, where he

writes code for a commercial Web site.

Acknowledgments
I would like to acknowledge the accomplishments of David Silverberg, Paul Forsyth, and

Matthew Esquivel in their efforts to make Web tools worthy of artistic recognition.
Every professionally prepared book is a team effort. Aestiva’s David Silverberg served as
this book’s publisher, J.W. (Jerry) Olsen served as project manager, Sydney Jones served

as copyeditor and more, and Joann Woy served as proofreader and indexer.

pablo_frontmatter.qxd 11/1/04 12:36 PM Page 4

Introduction .vii
Why the Web Shell? .viii
The Web Shell .ix

Chapter 1: Getting Started .1
Your Copy of Aestiva HTML/OS .1
Introducing the Web Shell .3
The Basic Interface Elements .4
Web Shell Commands .4
Common Commands .5
The ls Command .5
The cd Command .7
Getting Help .8
Exiting the Shell .8
Summary .8

Chapter 2: File Management .9
Working in the File System .9
Working with Directories .14
Working with Files .18
Managing Text Files .26
Managing H2O File Attributes .30
Uploading and Downloading Files .32
Summary .34

Chapter 3: The Shell Environment .35
The Command Prompt .35
The Command History .36
Editing Files .39
Running Applications .44
Viewing Images .46
Setting Shell Preferences .47
Setting Editor Preferences .50

Table of Contents

Pablo_toc.qxd 11/1/04 12:25 PM Page 1

Mouse Features .52
Summary .53

Chapter 4: Redirection .55
Introducing Redirection .56
Piping Data into Commands with the | Operator .59
Summary .64

Chapter 5: Useful Web Shell Commands .65
Creating a Simple Web Page that Lists Supported Platforms 65
Encapsulating and Deploying Web Applications .74
Summary .82

Chapter 6: Creating Custom Commands .83
Design a Web Shell Command .84
Summary .96

Appendix A .97
HTML/OS Resources .97
Books on HTML/OS .97
The Aestiva Web Site .97
The H2O Web Site .98
A Book on HTML .98

Appendix B .99
Shell Man Pages .99
Basic Supported Shell Features .99
Shell Commands .102

Learning the Web Shell

Pablo_toc.qxd 11/1/04 12:25 PM Page 2

Introduction

This book describes the Web-based shell, a new kind of user interface (UI), that until now
has not been available to Web developers. Like all computing environments, the UI
determines what a user can do with a system, how a user perceives its capabilities, and how
effectively a user can perform tasks.

The nature of a UI drives the way a computer is used. For example, a bank’s ATM terminal
guides its users through performing simple account management tasks. These tasks are
made accessible through a UI that presents users with simple buttons and dialog boxes to
encourage ease of use and quick transactions. On the other hand, the same banking system
provides very different UIs to its employees. A bank teller, for example, must be given
access to multiple accounts with the ability to perform advanced tasks. Still, a bank system
administrator would be given a more complex UI. Conceivably, all these UIs would run on
the same system and would have access to the same underlying capabilities. But they are
tailored to provide only the capability necessary to make the user more effective, depending
on the user’s role.

Since the advent of the Web and Web-based applications, only a few new tools have been
tailored for Web development. Therefore, Web developers typically do their work in either
a UNIX shell, or a client-side GUI such as Visual Studio. Both of these development
environments are quite good for their designed purposes, but they weren’t designed for the
Web. Shells are good for developing command-line applications, and GUI tools are good
for creating GUI applications. But each fails to provide a true integrated development
environment (IDE), for the Web developer.

If GUI applications are best developed with GUI IDEs, and command-line applications are
best and most often developed in shell environments, why not use Web-based applications
to develop other Web-based applications? Web developers can benefit from working with

vii

pablo_intro.qxd 11/1/04 12:33 PM Page vii

Web-based IDEs in practical ways that make their common tasks simpler. This book
discusses the advantages of developing Web applications with Web IDEs in general, and
with the Web shell in particular.

Why the Web Shell?

The most common UI today is the windowing environment (sometimes called a GUI or
graphical user interface). Most computers sold to the general public have a commercial
implementation of this kind of UI. GUIs are mouse-based graphical environments that use
windows to encapsulate programs and interact with the user through graphical cues and
dialog boxes. This kind of UI is good for many tasks, but it doesn’t work well across
networks (if you’ve ever logged into your Windows computer remotely, you know how true
that is), and they don’t provide convenient access to the professional user. Although client
GUI applications are popular, their Web-based counterparts have shown themselves to be
spectacularly more effective when you are performing tasks that require network content.

Before the wide adoption of GUI environments, the most common interface was the shell.
A shell is a text-based interface in which users issue commands to the computer by typing
them on a command line. A shell user, instead of double-clicking a folder icon to see its
contents, would type a command, such as ls to list the file contents of a directory to the
screen. This simple example doesn’t demonstrate an advantage with either the shell or the
windowing environment. But what if the task were to require getting the directory contents
and determining whether the output appeared in the contents of a file? Such a task would
be simple in a shell environment, but might require several steps in a GUI if it even
supported such unusual functionality. Shells also work well across networks. It is usually
just as convenient to run a shell on a remote computer as on the local host.

All major operating systems still supply shell interfaces alongside their polished graphical
environments, because a command-line environment provides quick, networked access to a
library of powerful commands, many of which can be combined to perform a complex set
of related instructions. To a skilled user, a shell can be more powerful than a GUI. If the
user knows which commands to use, it is just a matter of will. The user need not even lift
his hands from the keyboard. The primary disadvantage of a shell is that its users need to
learn the command set before it becomes useful. Until then, to the inexperienced user, most
shells behave rudely.

viii Learning the Web Shell

pablo_intro.qxd 11/1/04 12:33 PM Page viii

The wide adoption of the graphical user interface has made computing accessible to the
inexperienced users and has helped make personal computing a mass-market phenomenon,
because GUI designers have worked to make computers as simple to use as the breadbasket
at the dinner table. To move a file, grab it, move its pictorial representation (its icon) to
where you want it, and let go. Similarly, ATMs have had great success partly because of
their simplicity. Whereas banks previously wouldn’t have allowed access to their computer
systems from a publicly available terminal on a sidewalk, the ATM protects the integrity of
the bank’s computing environment and makes the user experience simple and effective.

You can bet, though, that the people who maintain banking systems use shell interfaces for
the bulk of their tasks. As in so many corporate and industrial arenas, the workhorse UI for
professional users — even though windowing environments have become very mature and
sophisticated — is the ugly-looking but powerful shell interface.

The Web shell uses both of these concepts to its advantage. It provides a command-line
interface to a Web-based system, but it also limits a user’s access to a system. That means
that a Web host can safely provide Web shell access to a system, just as a bank can place
an ATM on a sidewalk, without risking the file areas that should be off limits to a remote
user, and the user has the power of a Web-enabled shell environment.

The Web Shell

The Web shell is a Web-based implementation of the shell concept. Crudely speaking, it can
be considered a series of Web pages that look and behave like a traditional shell and act
upon the server hosting the application. The Web shell is written in H2O, a secure, cross-
platform scripting language. It parses the commands the user submits and responds to the
commands accordingly. When a user submits a command, it is interpreted and executed
through this scripting language. The result is a platform-independent product that doesn’t
rely on any shell functionality native to the host.

The Web shell is unique in that it enables users to operate a remote computer by way of a
Web browser that acts like a command-line interface: A user can log onto a remote
computer using a Web browser on any type of system, whether it’s a desktop computer or
a Web-enabled cell phone, and perform tasks on the remote system. No command-line
environment is required on either the host or the client. And because the Web shell can be
hosted by all the major platforms, the user could perform such functions on any type of
system that is running Web-shell software. This means that a copy of the Web shell running

Introduction ix

pablo_intro.qxd 11/1/04 12:33 PM Page ix

on Windows will behave in exactly the same way as a copy running on, for example, BSD.
A developer writing in a cross-platform language using the Web shell therefore generally
doesn’t have to account for operating system issues.

Web Computing

From a Web perspective, the scope of a file system extends to those files that are directly
accessible from a browser. This file area is known as the sandbox. From the perspective of
the Web shell, the sandbox is the entire file system. One advantage to this kind of file
system is that because the Web is mostly platform independent, the file system can be
platform independent from the perspective of the user. Additionally, a Web sandbox
contributes to system security because sandboxed users see only files relevant to Web
functionality and not those files used to manage the server.

For the majority of configurations, the sandbox area comprises all files that are accessible
from a browser. On a typical UNIX system, this corresponds to everything in the htdocs
and cgi-bin directories. Because, from the perspective of the Web shell, the sandbox is the
same across all supported types of Web servers, Web shell users by default are forced to
write cross-platform Web applications. This will be true as long as the script interpreter
and/or database functionality is supported on the other platform as well. Perl, PHP, H2O,
and HTML/OS work well across major platforms. HTML/OS conveniently provides an
integrated database, too. A Web shell user writing a Web application in H2O, HTML/OS,
PHP, or PERL, for example, won’t stray from the sandbox area where file systems can vary
across different operating systems. This book explains how to use the Web shell commands
pack and unpack to package and deploy cross-platform applications. It also covers how to
encrypt your source-code when you deliver an H2O or HTML/OS-based Web application to
a client.

On the browser side, Web files can be rendered in many ways from within the Web browser.
For example, whereas a traditional shell can provide a text-based list of the image files (gif,
jpg, bmp, and so on) in any given directory, the Web shell, as any Web-based application,
could also actually display the images, referenced by HTML image tags, from within its
Web-based interface. The Web shell was written with these distinctions in mind. The Web
content should be manageable as it is from within a traditional shell environment, but it
should also be viewable as the application user sees it. The Web shell maintains in its
various capacities the perspective of the browser-based Web. Therefore, although you use a

x Learning the Web Shell

pablo_intro.qxd 11/1/04 12:33 PM Page x

typical command-line interface when working within the Web shell, you can also view files
as though you were working within a browser.

It is because of its Web-based perspective on the server side, as well as on the client
(browser) side that the Web shell can be thought of as a Web IDE.

Practical Uses

The Web shell was designed for use as a file-management system as well as a Web
development tool. As a file-management system, the Web shell has file manipulation
capabilities similar to those of a traditional shell. These basic shell operations, include
adding, deleting, moving, and renaming files and directories within the Web sandbox, and
more advanced capabilities, such as text file manipulation, searching, and file processing.
This book covers the commands available in the Web shell as well as how to use these
commands to create Web applications and to manage Web systems.

Because most Web development consists of editing text files and testing them in a Web
browser, the Web shell also ships with a Web-based file-editing tool supplied as an
alternative to traditional command-line text editing tools, such as vi. The shell’s editor is a
browser-based interface that naturally allows for development in any Web scripting
language. Some of the more powerful of the languages supported are H2O, HTML/OS,
PHP, C#.NET, Perl, and Java Server Pages (JSP). The only caveat is that files need to be in
the Web sandbox to be visible to the Web shell. A file outside of the sandbox (outside of the
cgi-bin or htdocs folder) will not be accessible from the Web shell. This seeming
restriction ends up being an advantage to developers and hosting providers, as you’ll see
below.

Obviously, there are several ways of developing a Web application. A developer using a
traditional shell logs into a system via a remote connection, such as Telnet or SSH (if such
access is provided by the host) and then edits a file using a text-based program, such as vi.
This process requires knowledge of vi’s arcane command set as well as how to use an
uncorrelated browser interface to view the resulting application.

In contrast, a Web shell user logs into the Web shell through a browser and edits a text file
using the Web-based text editor provided. The Web shell user edits the file in a text area in
his browser. No text editing application is required by the host, and the user needs no
special knowledge or application. And because the development environment is the same

Introduction xi

pablo_intro.qxd 11/1/04 12:33 PM Page xi

as the deployment environment, the developer has the ability to run the script from within
the Web shell platform. No longer does the developer have to coordinate the development
process with application testing. The editing environment of the Web shell provides testing
functionality that is an integrated part of the development environment.

Hosting Providers

The Web shell’s file system sandbox provides added usefulness to hosting providers. By
supplying Web shell access, hosting providers achieve a balance between providing access
to clients and keeping inexperienced or malicious users from interfering with the system
and other users. The Web shell keeps individual Web shell users in their file system
sandboxes: Users can manage the files needed to run a Web site but don’t see files that
should only be of interest to a system administrator. In this way, a hosting provider of shared
accounts on a single machine can provide full Web-enabled shell access to power users, and
keep distinct users from hindering each other.

About This Book

This book will show you how to use the Web shell to manage server files and to develop
Web applications. As you proceed, you will be able to log in to your own copy of the Web
shell and test the concepts and examples that we will cover. The only resources you will
need are a Web shell account (which we provide for you), a Web browser, and an Internet
connection. You won’t need any technical knowledge either, although an understanding of
HTML, structured programming, and basic Web concepts would help.

Initially, this book covers basic concepts relating to how to get started with a copy of the
Web shell. Subsequent chapters show you how to use more advanced features relating to
application development and deployment. As you progress, you build various small Web
applications to learn how Web development is accomplished using the Web shell’s editor.
By the end of the book you should have a good understanding of how to use the Web shell
to manage a Web site, create a Web application, deploy a project, protect your source code,
and even add your own customized commands to the Web shell’s command set.

Chapter 1, “Getting Started,” explains how to gain access to a copy of the Web shell that
you can use as you progress through this book. It covers how to access the copy of the Web
shell provided with the purchase of this book. It also shows you how to install and use your

xii Learning the Web Shell

pablo_intro.qxd 11/1/04 12:33 PM Page xii

own copy of the Web shell. You also get a tour of the Web shell’s functionality and the
environment in which it runs, H2O or HTML/OS.

Chapter 2, “File Management,” shows you how to use the Web shell as you would use a
traditional shell. It covers basic commands and methodologies you can use to administer a
Web file system with the Web shell. It also covers more advanced topics relating to the
HTML/OS virtual file system including sandboxing and mirroring.

Chapter 3, “The Shell Environment,” shows you how to develop Web applications with the
Web shell. It explains how to use the Web shell as an IDE to create and deploy Web
applications and introduces you to the primary language used throughout this book,
HTML/OS. Finally, it walks you through developing and testing a simple Web application
using the Web shell’s editor.

Chapter 4, “Redirection,” covers how to combine shell commands to achieve more
powerful functionality and how to write the output of a command to a file. It also shows
you how to use some of the Web-specific commands you can use to transfer Web-based
files from a remote server to your host, as well as between your host and your local
machine.

Chapter 5, “Useful Web Shell Commands,” provides examples of how to use some of the
Web shell’s more commonly used commands to perform your daily development and
administrative tasks, how to use the shell’s Web-based nature to make Web management
easy, and how to package, deploy, and install a Web application using the shell’s
deployment commands.

Chapter 6, “Creating Custom Commands,” shows you how to write your own commands
for the Web shell. This chapter covers the H2O language in more detail and shows you how
to use H2O to program the Web shell’s command API.

About Web Shell Culture

The first iteration of the Web shell was developed in California at the offices of the Web
language company, Aestiva. It is written in Aestiva’s own language called H2O. H2O is a
cross-platform Web development environment. HTML/OS is an extension of H2O that
includes an advanced database. Both H2O and HTML/OS include the Web shell. Although
the Web shell is most commonly used to develop H2O and HTML/OS applications, it is not

Introduction xiii

pablo_intro.qxd 11/1/04 12:33 PM Page xiii

restricted. This book does not assume the reader will necessarily be developing in H2O or
HTML/OS.

The Web shell can be used when developing ASP, PHP, PeRL, and JSP-based applications.

This book does cover H2O basics but is not a comprehensive resource on the subject. For
detailed information on using H2O visit h2o.aestiva.com or look into the book, Advanced
Web Sites Made Easy, by D.M. Silverberg.

The Web shell continues to be updated and maintained by its original authors as well as by
new recruits, so you can expect exciting new features on a regular basis. In addition to
adding more commands, the Web shell is evolving to support interface enhancements that
reduce both typing and mouse usage.

As the first book on the subject, Learning the Web Shell provides an important resource for
developers of browser-based applications. Most important, since the Web shell is free and
available for all the major hardware platforms, its popularity is likely to explode, making
this book a must-read for everyone interested in gaining an appreciation for this exciting
new technology.

xiv Learning the Web Shell

pablo_intro.qxd 11/1/04 12:33 PM Page xiv

Getting Started

Before you can begin working with the Web shell, you will need to log in to a copy of
Aestiva H2O or Aestiva HTML/OS. Both environments are based on the H2O language.
Both include a Web shell. If you aren’t familiar with H2O or HTML/OS, they are integrated
development and deployment environments for Web development. At its foundation, H2O
is an interpreted scripting language; HTML/OS is the same as H2O but it also includes an
integrated database engine. Both include a suite of system-management and Web-
development tools built on the H2O language.

One of these tools is the Web shell, a Web-based application developed with and for H2O
and HTML/OS as part of their suites of Web development tools. The Web shell is a versatile
application that transcends the H2O environment. You can use it to manage and develop a
Web-based system even if you aren’t going to be using H2O applications.

This chapter introduces you to H2O. After that, you will be introduced to the basic elements
of the Web shell environment. If you already have a hosting account that includes H2O, then
accessing the Web shell is a matter of clicking the Web shell icon provided with H2O. Ask
your hosting provider for details.

Your Copy of Aestiva HTML/OS

To use the Web shell, you’ll need a copy of H2O or HTML/OS. Free downloads are
available at h2o.aestiva.com. Hosting accounts may include free H2O. It is also available by
purchasing HTML/OS. The Web shell is available from the login screen from H2O or
HTML/OS.

1

Chapter
11

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 1

At the bottom of the login page,
you’ll see a Shell Access checkbox.
This checkbox tells the Aestiva
HTML/OS whether you want to log
into the Web shell or into the
Aestiva desktop. The Aestiva
desktop is a graphical user interface
that has many of the same
capabilities of the Web shell but in a
graphical layout.

For the purposes of this book, you
will want to log into the shell, so
make sure that the Shell Access
checkbox is checked when you
log in. If your login was
successful, your first run of the
Web shell should look like a
relatively blank, dark window, as
shown in Figure 1.3.

2 Learning the Web Shell

Figure 1.2 Shows the login screen of HTML/OS.

Figure 1.1 Shows the login screen of H2O.

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 2

After you successfully log in to your copy of the Web shell, you have full file permissions to
work with the file system and run any commands. Because each copy of the Web shell is a
single-user application, you have no file permission issues to consider, as you would with a
traditional shell.

Introducing the Web Shell
The Web shell is a file management tool for Web-enabled servers. It allows you to remotely
manage files on a server via a command line, create and edit files in a Web-based text
editor, view remote image files, transfer files across the network, and encapsulate and
deploy Web applications, as well as several other features covered throughout this book. In
essence, the Web shell is a command-line driven Web-based integrated development
environment. You can use it to create, manage, and deploy a Web application without
needing to resort to third-party tools.

This section introduces you to the Web shell, explains some of the basic features of the Web
shell interface, and covers some of the terms that are used throughout this book.

Chapter 1: Getting Started 3

Figure 1.3 When you log in, the Web shell consists of a black screen with a text area at the bottom.

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 3

The Basic Interface Elements
Most of what you see when you first log into the Web shell is an empty screen. This area is
where the Web shell outputs information when you run commands. This book refers to this
area as the output area.

The small text box at the bottom of the screen is the command-line input box. This is where
you type shell commands. The cursor is active in this area when the Web shell loads, and
you can type in this text box without finding it and clicking it first. If you type a command
in this text box and press Enter, the command itself as well as the results of the command
are displayed in the output area.

To the right of the command line are two buttons labeled Desktop and Help. Clicking these
buttons produces the same results as running the commands of the same name does.
Clicking the Desktop button exits the Web shell and takes you to the Aestiva desktop, while
clicking the Help button displays the basic shell Help file. When you become more
experienced, you can type these commands on the command line instead of clicking the
buttons provided. They are there for the first-time user and can be turned off later. (Turning
off these buttons is covered in Chapter 3, “The Shell Environment.”)

Web Shell Commands
All commands you issue to the Web shell have a few things in common. They are all
combinations of words and symbols that are meaningful to the Web shell and tell it to
perform tasks. Some commands are only one word long; others are several words long, with
letters and symbols interspersed among them. For any single shell command, the first word
is the most important. This is the word that indicates the name of the command itself. The
rest of the words and symbols in a command statement are known as arguments and give
the command specific instructions about how to accomplish its tasks. The general form of
a command is the following:
/>command [arguments]

Most often, the arguments you give to a command are simply filenames. Sometimes,
though, the arguments indicate to a command how it should behave. This special type of
argument is called a switch. The switches supported by Web shell commands vary widely.
Some Web shell commands are complicated and support multiple switches, whereas others
are simple and support no switches at all. (Refer to Chapter 2, “File Management,” for more
information on switches.)

4 Learning the Web Shell

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 4

Common Commands
Although the Web shell supports several commands, some of which accomplish very
specific tasks, there are two commands that most users use more than any others. These two
commands list files in a directory, and change the current working directory, and are called
ls and cd, respectively.

The ls Command
If you are logged in to a copy of the Web shell, type ls in the command input box at the
bottom of the Web shell window and then press your Enter key. The Enter key on your
keyboard submits your command to the Web shell and causes it to act and possibly to
display information to the output area.

After you issue the command ls, the Web shell prints the contents of the current working
directory to the output area. If you see something like the results in Figure 1.4,
congratulations, you have just issued your first Web shell command!

If you successfully issued the ls command, you will see at the top of the window a
sequence of characters: />ls. This is what the command line would look like in a
traditional shell, but in the Web shell this is a pseudo command-line, because this is not
where your cursor writes as you type. When you issue commands to the Web shell, you type

Chapter 1: Getting Started 5

Figure 1.4 The ls command displays a directory’s file contents.

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 5

into the text box at the bottom of the screen and press Enter to submit your command. Your
commands then are displayed in the output area after you submit them. The Web shell prints
your commands and their output to the output area in the order in which you submitted
them, so the context of every command’s output is available to you.

The command you just issued, ls, prints a list of the files in the current directory as well as
other more detailed information about the files ls found. By default, ls displays a list of
output five columns wide. The most important column is the one farthest to the right; this
is the name of the file. The name of the file is placed farthest to the right because its length
can vary widely. Putting the filename on the right ensures that long filenames don’t displace
other data on your screen.
1 2 3 4 5

DIR MIRROR 984 04/01/03 08:11:16 apps

The columns printed by ls, as shown in the previous excerpt, are the following:
1. File type

2. Aestiva file area

3. File size in bytes

4. Date stamp

5. File name

The first column indicates the type of file, either a FILE or DIR (directory). Files hold data
and directories hold other files and directories.

The second column indicates the file area in which the file resides. This tells you whether
the file resides in the static or dynamic area of a Web server’s file system. The Web shell
marks files as PRIVATE when they reside in the directory that handles dynamic Web scripts
(on a UNIX system, the cgi-bin); PUBLIC when they reside in the file area used for static
documents (on a UNIX system, htdocs); and MIRROR when they reside in the PRIVATE and
PUBLIC file areas. The Web shell’s file system is a superposition of these two file system
areas. The internal location of a file, therefore, is indicated by both the location of the file
in the Web shell’s virtual file system as well as by the public/private attribute of the file.
Superimposing files in the public and private areas makes file management easier. The
details of public and private files are discussed in Chapter 2, “File Management.”

The third column of the output of the ls command displays the size of the file in bytes.

The fourth column displays the date stamp of the file. The date stamp tells you when a file
was created or last modified, but not necessarily when it was last moved from one file
location to another.

6 Learning the Web Shell

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 6

The fifth column displays the name of the file. A file’s name is distinct from the file itself. It is
a sequence of characters that you and the system use to identify the file. To stay out of trouble,
a filename in the Web shell must not contain any nonalphanumeric characters. Because Web
servers and browsers generally don’t behave well with filenames that contain spaces or other
nonalphanumeric characters, the Web shell has similar restrictions.

The cd Command
The other commonly used command is the cd command. The cd command changes the current
working directory.

Introducing the Current Working Directory

The current working directory is the directory the Web shell assumes you mean when you don’t
specify any particular directory. When you first log in to the Web shell, the current working
directory is set to the root directory of the Web shell’s file system, specifically referred to with
a single forward slash (/). As you work in the Web shell, the current working directory remains
the same unless you specifically change it with the cd command.

When, for example, you perform an operation on a file or ask for a list of the files in a directory
using lswithout specifying a directory, the Web shell assumes that you mean the current working
directory and looks there for your files. To take another example, if you need to delete a file in
the current working directory, you would have to specify only the name of the file and not its
containing folder. If the file were outside your current working directory, you would have to
precede the filename with the directory in which the file resides.

Files don’t have to reside in the current working directory for the current working directory to
have an effect on your work. You can also specify filenames that are relative to the current
working directory instead of typing their full names. The Web shell will assume, if you don’t
precede a folder name or a file name with a slash, that the file you specified starts with the name
of the current working directory. Navigating the file system with the cd command and relative
versus full paths is discussed in detail in Chapter 2, “File Management.”

Changing the Current Working Directory

The cd command stands for change directory and changes the current working directory—the
directory you are in—to a value that you specify as an argument. For example, if the current
working directory is /web/ and you want to go into a directory called notes located at
/web/notes, you would type the following:
/web/>cd notes

Chapter 1: Getting Started 7

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 7

As a result, the bottom-most line in the output area will read as follows. It indicates the new
current working directory, /web/notes.
/web/notes/>

If you want to move to a directory within a directory, you may specify its path directly instead
of performing intermediate steps. The following is an example of moving into a directory two
directories deeper than the current working directory by issuing only one command:
/web/>cd notes/myproject

Using the cd command to navigate the file system is covered in more detail in Chapter 2.

Getting Help
The shell provides its own Help system to guide you through learning its features and to provide
a reference for more advanced functionality. The command that you use to get basic help is
help, or its equivalent, man (which stands for manual). These man/help commands can be run
by themselves or with an argument containing the names of the commands you would like to
read about in the manual. The following example retrieves the manual page for the ls command:
/>man ls

If you want a list of all the shell commands, type help shell at the command line. When
you invoke the help command without arguments, you get a list of all the Web shell
commands for which you can get help. Otherwise, you get a help file, or manual, for the
command you entered as an argument. The exception to this is getting help about the shell.
For this enter help shell to see a synopsis of the Web shell’s features.

Exiting the Shell
It is a good idea to run the logout command when you exit the shell. The logout command
invalidates the shell session and makes it impossible for other users to log into your shell account
by simply running a URL that you used during your Web shell session. If you don’t do this, a
malicious user could log in to your shell session, if it hasn’t yet expired, and have his or her way
with your Web shell system. If you are using a public computer, don’t forget to log out!

Summary
Aestiva makes available to you a copy of the Web shell that you can use to run the examples
in this book. Once you register on the Aestiva Web site, you will have access to this copy
and be able to run test commands. To begin, you will want to run the most commonly used
commands, ls and cd, to get accustomed to the way the Web shell behaves. Along the way,
use the integrated Help system to expand your knowledge of particular commands.

8 Learning the Web Shell

pablo_chapter_1.qxd 11/1/04 11:28 AM Page 8

File Management

The Web shell comes with a set of commands you can use to manage the files and
directories. These commands list, move, delete, and create files and directories within your
Web environment.

In addition to moving files and directories, you can also use the file-management
commands to search for files, set their Aestiva file attributes, edit their contents, and search
for text within files. In addition, the Web shell supports wildcard file expansion, so that you
can perform tasks on multiple files by supplying a filename pattern instead of an explicit
list of filenames.

Managing files already on your server is easy when you use the Web shell, but at times you
will need to upload or download files. The Web shell provides seamless functionality to
accomplish these tasks as well. You won’t have to go looking for third-party tools to
transfer files across the network. The Web shell provides networked file transfer
functionality as part of its file-management command set.

Working in the File System

The basic unit of data storage on any computing system is the file. Files hold the data that
computers use to run programs and that users utilize to store information. Any given system
can handle and store data in other areas, such as in RAM, but any data that has to persist
when the computer is turned off must be stored in the file system.

The three primary components of a file are its name, its location, and its contents. A file’s
name must uniquely identify it in its directory and must have a proper form. (For more
information on filenames, see the accompanying note, “Filename Pitfalls.”) Often, the
filename, in addition to identifying the file, reveals the type of its contents as well. The part

9

Chapter
22

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 9

of a file’s name that indicates its type is called its extension and consists of a short sequence
of letters preceded by a dot and is placed at the end of the file name

Filename Pitfalls
Typically filenames don’t contain spaces or funny characters, such as ^ or *. These characters
can cause problems on the Web and within the shell interface, so you should avoid them. Use
the underscore character to signify a space; with the exception of the dot (.) and dash (-),
avoid nonalphanumeric characters altogether.

Often, filenames also indicate by their extension the type of data they contain. A file’s
extension, or the code after the last dot in its filename, indicates the type of data contained
in the file. A few typical file extensions used on the Web are .html for Web page files, and
.gif and .jpg for image files. Extensions are not always necessary, but this depends on
the operating system and what the file will be used for. On UNIX systems, file extensions
have been traditionally avoided; whereas on Windows systems, file extensions are generally
required. On the Web, file extensions are also generally required. They can tell servers and
clients what to do with a file. The Web shell also uses file extensions to determine what to
do with a file in many cases. How the Web shell deals with extensions is discussed later in
this chapter.

Another important attribute of a file is its location. For convenience, modern operating
systems allow for the organization of files in a system of folders or directories. All files on
a system reside in folders, most of which themselves reside in other folders. The way to
specify the location of a file in the Web shell, as well as on most other systems, is by naming
the succession of folders leading up to the target location, where folders are separated by a
forward slash (/). This list of the folders containing a file or folder is known as a path.

All paths begin with the base directory on the system, the root directory. The root directory
is specified by a forward slash (/) and is the parent of all files and directories. Child
directories reside within these directories and may themselves contain other directories. The
resulting arrangement is a hierarchical tree of files and folders.

Specifying a file in this tree involves listing the various directories that contain the files in
their hierarchical order, each separated by a forward slash. This enumeration of directories,
when starting from the root directory, is known as a full or absolute path. Later, this chapter
talks about a similar concept, the relative path.

10 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 10

Navigating File Paths with the cd Command

The Web shell comes installed as part of a suite of Web-based tools and their related files
and directories. For illustration, this chapter references these files, because they are
common to every copy of the Web shell.

When you log into the shell, the current working directory is the root directory. (For more
information on the current working directory, refer to the note, “The Current Working Directory,
in this section.) Running the command ls as your first command yields a list of all of the files
in the root directory. All files and folders in the root directory have the path /<filename>. For
example, a file named test.txt in the root directory has the path /test.txt.

The Current Working Directory
The current working directory is the primary directory in which you are presumed to be
working. When you log in, the current working directory is set to /, the root directory. You
change its value by using the cd command and utilize it when you refer to files without
explicitly naming their directories. Doing so saves you from having to type directory names.

From the root directory, you can change the current working directory to the directory
/apps by using the cd command:
/>cd /apps

After you run this command, the command prompt should indicate the new value of the
current working directory:
/apps/>

At this point, when you type the command ls with no arguments, all files and directories
listed have the general path /apps/<filename>.

You could refer to these files by their full paths, as in the following example, which changes
the working directory to /apps/shell/:
/apps/>cd /apps/shell

Because it could quickly become tedious to type the full paths of files and directories,
especially if they reside deep inside the file hierarchy, most users omit the current working
directory part of a file’s path. The Web shell assumes that you mean the current working
directory when you omit the full path to a file, and you can indicate whether this is your
intention by supplying or omitting a leading slash to a file argument.

Chapter 2: File Management 11

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 11

In the previous example, because the working directory was /apps/, you could have more
easily issued the following command:
/apps/>cd shell

Because in this case the file argument, shell, doesn’t start with a slash, the Web shell
prepends it with the value of the working directory. These kinds of file paths, those that
don’t begin with a slash and therefore imply the working directory, are called relative paths.

Most of the time, you refer to a file in the shell by its relative path, that is, by its path relative
to the current working directory. In a sense, it is the sole purpose of the current working
directory to free you from having to refer the full paths of files and folders that you want to
reference. It is often easier to change the working directory to the one closest to the file area
you want to manipulate and use relative paths than it is to not change the working directory
and use full paths to files you want to reference, even if you have only one simple operation.

Using the dot and dot-dot Directories

The dot (.) and dot-dot (..) directories are pseudo directories present in every directory on
your system. They are not real directories in that you don’t have the ability to add or delete
them as you would normal directories. They are instead references to existing directories:
The dot directory is a reference to the indicated directory, and the dot-dot directory is a
reference to the directory above the indicated directory.

To move up in the directory structure, use the dot-dot directory with the cd command. If,
for example, the current working directory is /apps/shell/ and you want to move into
the parent directory, /shell/, issue the following command:
/apps/shell/>cd ..

The dot-dot directory represents the parent directory in any given directory. When you issue
the command cd .., you are telling the Web shell to change the working directory to the
parent of the current working directory.

Use the dot-dot directory with any valid file path. For example, you could use the cd
command to switch into a sibling directory, if it exists, by issuing the following command:
/apps/shell/>cd ../calendar

This command tells the Web shell to change the working directory to a directory in the
parent directory called calendar. Doing so is equivalent to changing from /apps/shell

12 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 12

up one directory to /apps/ and then down to /apps/calendar. You can use the dot-dot
(..) directory to traverse up the directory tree as far as you need to go by invoking it
multiple times. For illustration, the following command uses the dot-dot directory in
multiple places to change the working directory to the current working directory; in other
words, it changes nothing:
/apple/banana/cherry/>cd ../../banana/cherry/date/..

In the preceding command, the current working directory is changed to two directories
above the current working directory, /apple, then down to /apple/banana/cherry/date
and back up to where you started, /apple/banana/cherry.

Another pseudo directory at your disposal when you use the Web shell is the current
directory, represented by one dot (.). You can use the single-dot directory when a command
needs an explicit directory and you don’t want to type the current working directory. For
example, if you want to delete the current working directory, you can issue the command
rmdir with the argument (.). The rmdir command is discussed later in this chapter. All you
need to know about rmdir for now is that it deletes the directory whose name you pass to it
as an argument. If you issue the following rmdir command, the date directory is deleted.
/apple/banana/cherry/date/>rmdir .

It would have had the equivalent effect if you had issued the following command using a
full path instead of a relative path.
/apple/banana/cherry/date/>rmdir /apple/banana/cherry/date

As is evident in the preceding example, using relative paths at the command line almost
always saves you typing.

You can also use the dot directory as you would the dot-dot directory in a file path, although
it is difficult to conceive of a use for it in this context. The following example changes the
current working directory to /apple/banana/ and utilizes the dot-dot directory as well as
the dot directory.
/apple/banana/cherry/date/>cd .././../.

/apple/banana/>

In the preceding example, you can safely ignore any dot slashes (./) in the file path because
they refer to the current directory and are therefore redundant. The preceding command,
stripped of its dot slashes (./), is equivalent to the following command, which moved the
current working directory to a directory two directories above its current value:

Chapter 2: File Management 13

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 13

/apple/banana/cherry/date/>cd ../..

/apple/banana/>

The dot slashes were not needed in the preceding example, but you will often need to use
them. The dot directory is more often used to perform a command like the following:
/apple/banana/cherry/date/>mv /index.html .

The preceding command tells the shell to move the file called index.html located in the
root directory (/) into the current working directory, the directory represented by the single
dot. The first argument (/index.html) is the filename, and the second argument (.) is the
destination directory. (The mv command moves files and is covered in more detail later in
this chapter.) In general, the dot directory doesn’t signify the current working directory but
rather the directory indicated by the file path.

Since the second argument in the preceding command (.) doesn’t begin with a slash and
therefore signifies a relative path, it is equivalent to the following command:
/apple/banana/cherry/date/>mv /index.html /apple/banana/cherry/date/

The dot directory invokes the value of the current working directory when used by itself;
but it is not limited to this usage.

The cdl Command

The cdl command combines cd and ls into one command to save typing. Instead of having
to type ls to see the files in a directory after moving into it, the list is displayed
automatically when you type cdl. On many Web copies of the Web shell, the cd command
is aliased to a command called cdl. That means that when you type cd, internally, the Web
shell runs the cdl command. To find out whether this is the case on your system, use cd to
change into a directory and see if the list of files in that directory is displayed. Chapter 3,
“The Shell Environment,” covers how to manage aliases.

Working with Directories

Your directory structure is not static. You often need to make changes, such as move your
directories, or create new ones to meet your needs. You also need to perform basic
housekeeping; for example, you might need to remove a directory that is no longer used.
The Web shell makes such administrative tasks easy to perform. In this section, you learn

14 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 14

about the commands, such as mkdir and cpdir, you can use to create, remove, copy, and
move your directories. This section also presents a detailed discussion of rmdir, which was
mentioned previously.

Creating Directories

To make new directories on your Web server, use the command mkdir. The arguments you
supply to mkdir are the names of the directories you want to create. If, for example, you
are in your test directory (in this example, mytest), to create a new directory inside this
folder, issue the following command:
/mytest/>mkdir newdir

In this case, mkdir makes a new directory called newdir and places it inside mytest. The
full path to the newdir directory is, therefore, /mytest/newdir. Alternatively, you could
have called mkdir with the full path to the new directory as its file argument, in the
following way:
/mytest/>mkdir /mytest/newdir

But using the full path requires additional typing. Because you started in the /mytest
directory already (meaning that /mytest was the current working directory), you can omit
that part of the path to the new directory and imply it by using a relative path.

If you want to create a new directory outside of the working directory, issue the mkdir
command with the full path of the new directory or use the dot-dot directory to refer to it.
It is up to you to determine when it is more convenient to use the cd command to move to
a new directory and work from there, or when to issue commands with more complicated
paths.

To create a new directory outside of the current directory, execute a command similar to the
following:
/mytest/>mkdir /mytest2/newdir

The preceding command creates a new directory in /mytest2 with a full path. You could
also have issued the following command that uses a relative path and the dot-dot parent
directory as follows:
/mytest/>mkdir ../newdir

Chapter 2: File Management 15

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 15

Using relative pathnames with the dot-dot parent directory is convenient in simple cases.
But when you would otherwise have to use multiple dot-dot directories, you are less prone
to make an error if you use the full path.

Regardless of how you refer to a directory argument when you use the mkdir command,
make sure that the parent directories — the directories that will contain the new directory
— already exist. If the parent directories don’t exist, the mkdir command fails to create the
new directory.

In the preceding example, if the parent directory to the new directory — /mytest2 —
doesn’t exist, mkdir quietly fails to make the new directory. If you want to make a directory
inside of several other directories that don’t exist, you have to do so incrementally. For
example, if you want to create the directory /first/second/third, and none of the
parent directories exist, you have to create each directory first, starting from the root
directory, with separate commands, as shown here:
/>mkdir first

/>mkdir first/second

/>mkdir first/second/third

The result of the preceding commands is a new directory path, /first/second/third.

Although you can’t create directories if their parent directories don’t exist, you can create
multiple directories with one instance of mkdir by passing multiple directories as
arguments. To do this, separate additional directories with spaces:
/>mkdir aaa bbb ccc

In the preceding example, all three directories, aaa, bbb, and ccc, were created at the same
time (well, almost). You can see the result of this command by calling ls:
/>ls

DIR MIRROR 48 04/20/03 20:49:15 aaa

DIR MIRROR 48 04/20/03 20:49:15 bbb

DIR MIRROR 48 04/20/03 20:49:15 ccc

The result of the ls command tells you that mkdir was successful in creating the directories
aaa, bbb, and ccc. You’ll probably want to call ls after running mkdir, just to make sure
that the directories were created properly.

16 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 16

Removing Directories

Because directories can contain multiple files as well as other directories, the Web shell
treats directories differently from the way in which it treats files. Directories often have
their own commands. To delete a directory, use the command rmdir. The rmdir command
deletes an empty directory if you supply it as an argument. In the following example, rmdir
deletes the empty directory /emptydir.
/>rmdir emptydir

If you want to delete a directory that contains files or other directories, you have to tell
rmdir explicitly to delete the contents of the directory you want to delete before it deletes
the directory itself. You can tell rmdir to do this by putting a -r by itself after the
command. Most users put special indications, such as -r, immediately after the command
and before any file arguments. (See the accompanying note, “Command Switches.”) The
following example deletes the /junk directory and all of its contents:
/>rmdir -r /junk

If you try to delete a directory that has file contents without including the special -r switch,
rmdir won’t delete anything. Instead you see a message that tells you that the directory you
are trying to delete is not empty.

Command Switches
The -r argument to the rmdir command is an example of a switch. A switch comprises a
dash followed immediately by a letter and is a special argument to a given Web shell
command. Many Web shell commands support switches to give you added control over how
the command behaves.

In the case of the rmdir command, the -r switch is required for nonempty directories to
ensure that you know that the directory you want to delete is not empty.

It goes without saying that the rmdir -r combination is a powerful command. You could
potentially destroy a tremendous number of files, and you wouldn’t be able to revive them
afterwards, so be careful when you use it. Thankfully, although you could delete any
number of files and directories in your file system, the Web shell won’t let you delete the
root directory (/), partially because that would mean suicide for the Web shell itself.

Chapter 2: File Management 17

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 17

Copying and Moving Directories

One simple way to back up all your work is to copy the base directory that contains it. To
copy an entire directory, use cpdir the command. The cpdir command copies a directory
and its contents to another directory. The general form of the command is as follows:
/>cpdir SOURCE DESTINATION

The source and destination have to be directories. If the destination directory already exists,
the clone of the source directory is placed inside the destination directory and given the
same name as the source.

If you use cpdir to back up your work, you would probably want to devise a naming
convention for your backup directories. If, for example, your application were in a directory
/calendar, you might store the backup copies of your calendar application in a /backup
directory and give the backup a name that indicates the date on which the backup took place:
/calendar/>cpdir /calendar /backup/calendar/2003_NOV_3

Assuming the 2003_NOV_3 directory doesn’t already exist, the contents of /calendar
would be copied into that directory and could serve as a snapshot of the current state of
development of your /calendar application.

To move or rename a directory, use mvdir in a similar manner. The mvdir command works
just like the cpdir command; but it deletes the source directory after copying it to the
specified location.

Working with Files

After your directory structure is established, you probably won’t have to change it very
often. Files, however always need to be moved around and managed as part of the basic task
of managing a Web-based system. The Web shell supplies commands, such as cp, mv, and
rm, to enable you to copy, move, and delete files.

Copying Files

You’ll often need to create a copy of a file for various reasons, for example, to back up an
existing file, or to create a new file using an existing file as a starting point. To copy files
in the Web shell, use the cp command. The cp command creates a copy of an existing file
and gives it the name you specify. Generally, the cp command takes the following form:

18 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 18

/>cp SOURCE DESTINATION

In this command, SOURCE is the path to the existing file and DESTINATION is the path to
the copy of the file. If the destination filename specifies a folder in addition to a filename,
make sure that the folder already exists. Otherwise, you’ll have to create it with mkdir.

To create a backup copy of a file in your working directory, you might use the cp command
in the following manner:
/mydir/>cp index.html index.html.bak

The preceding command creates a copy of index.html and names that copy
index.html.bak.

If the destination file already exists, using the cp command will overwrite the existing file.
Be careful when calling cp if you aren’t sure whether the destination file exists. You can
easily delete a file if you choose a destination filename that already exists.

If you want to copy the source file to a different directory while keeping the source file’s
name, you need to specify only the destination directory as an argument. In general, if the
destination filename is a directory, cp creates a copy of the source file in that directory.
Here is an example that creates a copy of index.html:
/>cp index.html mydir

The preceding command creates a copy of /index.html and places it in /mydir. If you
move into mydir, you would then see it by calling ls as follows:
/>cd mydir

/mydir/>ls

FILE PRIVATE 143 04/20/03 22:06:52 index.html

The presence of the newly created index.html file indicates that the file copy was
successful.

To copy multiple files into an existing directory, name the source files as arguments before
the final argument, the destination directory. In general, if the last argument you issue to the
cp command is a directory, the Web shell tries to make copies of all the files specified as
arguments and places those copies in the destination directory, as in the following example:
/>cp img1.gif img2.gif img3.gif mydir

Chapter 2: File Management 19

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 19

The preceding command creates copies of img1.gif, img2.gif, and img3.gif and places
those copies in mydir. If you move into mydir, you see these new files by issuing a call to
ls:
/>cd mydir

/mydir/>ls

FILE PRIVATE 623 04/20/03 22:07:22 img1.gif

FILE PRIVATE 611 04/20/03 22:07:22 img2.gif

FILE PRIVATE 607 04/20/03 22:07:22 img3.gif

Again, keep in mind that cp overwrites any destination files if they already exist. This is
particularly important when you call cp with a directory destination, because you aren’t
specifying explicit target filenames. The files whose names are inferred by the Web shell
will be overwritten.

Removing Files

You’ll often want to remove files that you don’t need, either to free disk space, or to tidy
your file system. To delete files in the Web shell, use the rm command. The rm command
quietly and permanently removes any file whose name you supply as an argument. The rm
command is easy to use; but it’s also powerful, so be careful when you use it. It won’t ask
you whether you are sure about deleting a file, and you won’t be able to undelete any
deleted files if you happen to change your mind.

After you make sure that you want to delete a file, you can do so by supplying it as an
argument to rm, as in the following example:
/mydir/>rm index.html.bak

The preceding example removes the file named index.html.bak in the working directory,
/mydir. The rm command tells you if it was unable to remove the file for any reason; but
if it was successful, it says nothing. You run an ls command to get an updated view of the
file system.

To remove multiple files, supply those filenames as additional arguments. The following
example removes all the files in the /images directory:
/images/>rm armadillo.jpg gazelle.jpg llama.jpg zebra.jpg

If you were to run ls against the images directory, you should see that the files are gone.

20 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 20

Take note that the rm command works against files, but doesn’t work against directories. If
you want to remove directories, use rmdir instead.

Moving Files

When you need to move a file to a different directory, or rename a file, or both, use the mv
command. The mv command works in a manner similar to cp. It changes the path of a file
from its current value to another value. In general mv requires a source and a destination
filename as arguments.
/>mv SOURCE DESTINATION

As with the cp command, the source filename must be an existing file, and the destination
filename must be another valid filename, whose parent directory must exist, or it must be
an existing directory. If the destination is a valid filename, the source file is renamed and
effectively moved to the destination filename if the new directory is different. If the
destination filename is a directory, the mv command moves the indicated file to the
destination directory.

To move a file called gazelle.jpg to a directory called images, you issue the following
command:
/>mv gazelle.jpg images

You check to see that the file moved by changing into the images directory and getting a
file list, as follows:
/>cd images

/images/>ls

FILE PRIVATE 21991 04/20/03 23:09:44 gazelle.jpg

The ls command tells you that the move was successful, because its results indicate that
the file gazelle.jpg is now in the /images directory.

As with the cp command, you can move multiple files at one time by supplying them as
arguments, with the final argument being the destination directory. The following example
moves three .jpg files into the images directory:
/>mv zebra.jpg armadillo.jpg llama.jpg images

/>cd images

/images/>ls

Chapter 2: File Management 21

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 21

FILE PUBLIC 11661 04/20/03 23:27:36 armadillo.jpg

FILE PRIVATE 21991 04/20/03 23:09:44 gazelle.jpg

FILE PUBLIC 19878 04/20/03 23:27:47 llama.jpg

FILE PUBLIC 41563 04/20/03 23:27:26 zebra.jpg

Check your work with the ls command to make sure that the mv command was successful.

Using Wildcards

It can be tedious to type the full name of files you pass as arguments to a command. The
Web shell supports the use of wildcards (sometimes called file globs) to make it easier to
indicate one or more files with one filename pattern. Instead of typing the full name of a
file, you can specify a filename pattern and let the Web shell fill in the blanks and draw the
appropriate file matches. The character you use to specify to the Web shell that it can fill in
the blanks for filenames is the asterisk character (*).

For example, to delete all the .jpg files in the /images directory, you issue the following
command:
/images/>rm *.jpg

The * signifies any sequence of characters of any length and draws matches from the names
of files in the Web shell’s file system. In the preceding example, all files with names ending
with .jpg are matched. The Web shell supplies those matching files to the command—in
this case rm—as file arguments. Because the argument (*.jpg) doesn’t begin with a slash
and doesn’t indicate any folder names, the Web shell matches files in only the current
working directory.

Because the /images directory contains no other files, as evidenced by the output of ls,
you could have issued the following command:
/images/>rm *

The command rm * removes all files in a directory.

Before issuing the rm command, the images directory contained four files:
/images/>ls

FILE PUBLIC 11661 04/20/03 23:27:36 armadillo.jpg

FILE PRIVATE 21991 04/20/03 23:09:44 gazelle.jpg

22 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 22

FILE PUBLIC 19878 04/20/03 23:27:47 llama.jpg

FILE PUBLIC 41563 04/20/03 23:27:26 zebra.jpg

To remove only one of the files, you don’t have to supply the full name to the rm command.
Instead, you could supply a portion of the filename and use the asterisk character to imply
the rest of the name. If, for example, you want to remove the armadillo.jpg file, you
issue the following command:
/images/>rm a*

The a* argument matches all files in the current directory whose names begin with an a.
Because armadillo.jpg is the only file whose name begins with an a in the images
directory, it is the only one that matches the pattern and is the only filename argument
supplied to the rm command.

More complicated patterns are also possible. For example, to move files in the working
directory that begins with a and end with .gif to a folder called /trash, you issue the
following command:
/graphics/>mv a*.gif /trash

The preceding command moves all matching files, those that begin with a and end with
.gif, in the /graphics directory and places them in the /trash directory. If thousands of
files matched that pattern, using the wildcard character would save you a tremendous
amount of typing.

But even when only one file or directory produces a match, the wildcard character almost
always saves typing. After you get accustomed to wildcards, you will likely start using them
most often with commonly used commands, such as cd. Instead of, for example, moving
into a new directory by naming it explicitly, you need to specify only enough to identify it
uniquely and let the Web shell do the pattern matching. If the root directory contains only
one file starting with b, /business_applications, you could issue the following
command to move into that directory:
/>cd b*

Remember though, that the wildcard characters work only for files and directories. They
won’t match anything else, such as commands or shell environment values.

In rare cases, you’ll want to turn off pattern matching at the command line. If, for example,
a filename contains an asterisk in its name and you want to supply it as an argument, you

Chapter 2: File Management 23

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 23

have to tell the Web shell that you mean a literal asterisk, not a wildcard character. To turn
off wildcard matching, wrap the file argument in double quotes:
/mytest/>rm ”a*b.txt”

The preceding command deletes the file a*b.txt. If you omit the double quotes, the rm
command matches all files beginning with a and ending with b.txt, including, but not
limited to a*b.txt.

In general, the Web shell always assumes that any non-switch argument that you pass to a
command is a filename. If you want to supply an argument that is not a file or directory, a
good rule of thumb is to wrap that argument in double quotes so that the Web shell doesn’t
go looking for matching files.

In addition to matching filenames, the Web shell also matches partial or entire paths of files
and directories. For example, say you have a directory with the following subdirectories:
/mydir/>ls

DIR MIRROR 48 04/21/03 23:36:06 aaa

DIR MIRROR 48 04/21/03 23:36:06 bbb

DIR MIRROR 48 04/21/03 23:36:06 ccc

If each of the directories contains multiple files, you could remove all of them at once, and
keep their parent directories intact, with the following command:
/mydir/>rm */*

The Web shell allows for any number of wildcard characters in a pathname. The following
moves all matching files in the /myapplications directory, into the /trash directory:
/>mv /myapplications/*/documents/*.html.old /trash

The preceding path name matches the following files. The variable part of the pathname is
printed in caps:
/myapplications/AAA/documents/XXX.html.old

/myapplications/BBB/documents/YYY.html.old

/myapplications/CCC/documents/DDD.html.old

Using wildcards at the folder level in your pathnames can be a powerful way to reference
a large number of files in your file system, but it can be expensive for the Web shell to look
in all of these directories for matches, so it isn’t a good means of saving time typing.

24 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 24

Finding Files

To find a file when you know part or all of its name, but not its location, use the find
command. The find command looks in multiple subdirectories for a file whose name you
specify as an argument. If, for example you know you have a file called checkout.php
somewhere on your system, but you don’t know where it is, you could issue the following
command:
/>find checkout.php

/myapps/pages/checkout.php

/work/test/checkout.php

The lines after the find command statement are the output of the command. These are the
files the find command has found that match your argument.

By default, the find command traverses the entire directory tree beneath your current
working directory as it looks for matches. To tell find to refrain from going too deep into
the directory structure (and make you wait while it does so), you can use the -d switch to
tell it how deep to go. If you use the -d switch, you must supply a number after the switch
indicating directory depth. Some switches require arguments. See the accompanying note,
“Switches That Require Arguments,” for more information.

Switches that Require Arguments
Some switches are special in that they require an argument themselves. The -d switch for
the find command is an example of a special switch. It requires an integer argument that
tells the find command how many directories deep to look for matching filenames. The
argument 1 corresponds to the working directory, 2 to the level below the working directory,
and so on. For example, to find the file checkout.php and to avoid looking deeper than four
directories, use find in the following way:

/>find -d 4 checkout.php

/myapps/pages/checkout.php

/work/test/checkout.php

The Web shell is smart about these special switches. If a switch requires an argument, the
Web shell won’t confuse the switch argument for a filename argument; a switch argument is
tightly bound to its switch.

By default, the find command looks in the current working directory for the file with a
name you specify. If you want to find a file in a directory other than the current working
directory, you must supply it as the first argument, as in the following example:

Chapter 2: File Management 25

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 25

/>find /myapps checkout.php

/myapps/pages/checkout.php

In general, excluding any switches and their arguments, if you give the find command one
argument, it interprets that argument to be the filename or file pattern for which it should
look; if you give it two arguments, the find command interprets the first argument to be
the base directory in which it should look and the second argument to be the filename.

The preceding find command looks only inside of the /myapps directory for possible
instances of files named checkout.php. That is why find won’t find the file of the same
name that was found previously, /work/test/checkout.php.

The find command also accepts wildcard filenames. When you supply a wildcard filename
to find, make sure to wrap the file argument in double quotes to prevent the Web shell from
expanding the file pattern and replacing it with file matches. Remember that filenames
containing wildcards are expanded into and replaced by a list of files whose names match
the filename’s pattern. To look in multiple subdirectories for a filename pattern, you have
to turn off wildcard expansion by wrapping any file pattern in double quotes. The following
example looks for all files in the current directory with names containing aaa:
/>find “*aaa*”

If you had omitted the quotes and there had been a file named aaa.txt in the current
working directory, the find command would have been interpolated into the following
statement, which is not what you wanted:
/>find aaa.txt

The preceding erroneous command, lacking double quotes around the filename pattern,
would have therefore only found files on your system with the name aaa.txt, not files
containing the text aaa, as was the initial intent.

Managing Text Files

Because most of your Web files will likely be text-based, the Web shell comes with basic
commands to display and search for content within text files. You can view the content of
one or more text files in the Web shell output area with the cat command, or look for text-
based content anywhere on your system with the findtxt command.

26 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 26

Viewing Text Files

One way to view the contents of one or more text files quickly is with the command cat.
The cat command was designed to concatenate multiple files and display them on the
screen, but it is also typically used to display the contents of a single file. To print the
contents of a file to the screen, pass the filename value to the cat command as an argument
as in the following example:
/apps/shell/conf/>cat settings.conf

”workingdircolor”,”#cfcf99”

”outputcolor”,”#999999”

”inputcolor”,”#6699cc”

”runheight”,”500”

”runwidth”,”900”

”scrollbuffer”,”40”

”autoscroll”,”on”

”inputsize”,”80”

”showbuttons”,”on”

”backgroundcolor”,”#000000”

”fontface”,”courier new”

”fontsize”,”10”

If the file is a text file (for example, it’s not an image or other binary file), cat displays its
contents to the output area of the Web shell. If you accidentally use cat on the contents of
a binary file such as an image, however, you might get some funny characters. This won’t
cause you problems (as it could in legacy shells). But keep in mind that if the output isn’t
what you expected, you might not be looking at a text-based file.

To print multiple files, pass the files as arguments to the cat command. The following
statement displays the contents of all files two directories deep that end with .html:
/>cat */*/*.html

The contents of the files that match the file arguments will be concatenated and displayed
to the screen.

The cat command also accepts the following switches:

• -d separates files with a text divider.

• -l outputs line numbers.

Chapter 2: File Management 27

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 27

The -d option tells cat to separate multiple files’ contents with a text divider as well as the
a filename header.

When it is necessary to print the line numbers of a file’s contents, you can use the -l option:
/>cat -l file1.txt file2.txt

/apps/shell/conf/>cat -l settings.conf

1 ”workingdircolor”,”#cfcf99”

2 ”outputcolor”,”#999999”

3 ”inputcolor”,”#6699cc”

4 ”runheight”,”500”

5 ”runwidth”,”900”

6 ”scrollbuffer”,”40”

7 ”autoscroll”,”on”

8 ”inputsize”,”80”

9 ”showbuttons”,”on”

10 ”backgroundcolor”,”#000000”

11 ”fontface”,”courier new”

12 ”fontsize”,”10”

28 Learning the Web Shell

Figure. 2.1 Running the cat command against multiple files with the –d option makes it easy
to view the contents of multiple files at a time, while keeping the files’ contents distinct.

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 28

The cat command resets the line numbers at the beginning of every file when you use cat
-l on multiple files.

Searching for Text in a File

If you want to find an instance of a word or phrase in a set of files, use the command
findtxt. The findtxt command is similar to the find command in that it searches all
files in a directory tree for a match; but whereas find looks at the names of files for
matches, findtxt looks at the contents of files.

If you supply one argument to findtxt, it looks in all files in subdirectories of the current
working directory for files with contents that match the argument you supply. In the
following example, the findtxt command looks in all directories in the Web shell’s file
system for files containing the word aestiva:
/>findtxt aestiva

/apps/readme.txt

The findtxt command prints all the matching files’ pathnames to the output area. In the
preceding case, the findtxt command found one file with the word aestiva in it,
/apps/readme.txt.

As with the find command, you can limit the maximum depth to which findtxt traverses
the file system with the -d switch. After the -d switch, remember to supply a number
indicating the maximum traversal depth:
/>findtxt -d 3 aestiva

Because of the –d switch, the preceding call to findtxt won’t go more than three levels
down any directory path.

The findtxt command also supports a starting directory other than the current directory,
if one is supplied as the first argument, as in the following example:
/>findtxt /apps aestiva

If you supply a -d switch to findtxt, remember that it signifies a directory depth relative
to the starting directory.

Chapter 2: File Management 29

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 29

Also be careful to wrap any arguments that contain spaces or odd characters in double
quotes. The space, in particular, sets off different arguments unless it is contained in double
quotes as in the following example:
/>findtxt “peter rabbit”

If you had omitted the quotes, the Web shell would have responded as though peter and
rabbit were two distinct arguments instead of one and would have looked for instances of
the word rabbit in the directory peter.

The result of findtxt is a list of paths to files that made a match. To make this list
clickable, such that clicking any file path opens an editor window for that file, use the -c
option. You might want to try using the -c option and clicking a resulting file to see this
happen. After you click a filename (it won’t appear clickable to you, but it will be), the Web
shell opens an editor window with the file you clicked.

Managing H2O File Attributes

Lying underneath the Web shell’s file system is the HTML/OS file system. The file system
is a bit unusual in that it maps two different server directory trees onto the same HTML/OS
directory. That means that when you look at the file and directory tree from within the Web
shell, you are actually looking at a superposition of two directory structures—the document
directory and a folder in the scripts directory—on the Web server. On a UNIX system, the
document directory is usually called htdocs, and the scripts directory is called cgi-bin.
The HTML/OS file system—and by extension the Web shell file system—is the
superposition of these two directories and their contents, cgi-bin/private and htdocs.

The htdocs side of the file system is called the public side, and the cgi-bin/private side
is called the private side. This naming convention is used because Web servers give
unrestricted access to files in the htdocs side of the file system unless restricted. On the
other hand, files outside of the htdocs area not accessible from the Web. Whether a file or
directory resides on the public side or the private side or both is considered by the Web shell
to be an attribute of the file. The possible attributes of an HTML/OS file are public,
private, or mirror.

When you make a new directory in the Web shell with the command mkdir, the Web shell
creates two copies of the new directory: one on the public side and one on the private side.
The resulting attribute of the directory is mirror. If for some reason a parent directory

30 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 30

doesn’t exist on one side, issuing mkdir creates the directory on the side that has the parent
directory.

When you create a file, HTML/OS either makes it public or private, depending on the file’s
extension and depending on HTML/OS’ configuration. HTML/OS handles the
public/private issue for you, so you generally don’t have to worry about managing this
aspect of your files, but in those cases when you do, the Web shell provides commands to
alter this attribute of a file. Managing file associations is covered in Chapter 3, “The Shell
Environment.”

Even though the HTML/OS system running underneath the Web shell takes care of putting
files in the private area or the public area, sometimes it is necessary to override a file’s
placement or to apply HTML/OS’ file area determination to an existing file. To move files
between file areas, use the fixfile, fixpublic, and fixprivate commands. When you
use any of these special commands, you don’t change the location of files in the Web shell’s
file system. You change only the location of files on the server, between the public and
private side, thereby changing the public/private attribute of a file as viewed from
within the Web shell.

The fixfile Command

To move a file to its appropriate location, either public or private, use the fixfile
command. The fixfile command takes any number of file arguments and puts the files
where they belong according to their extension and HTML/OS’ configuration. The
following command applied the fixfile command to .gif files in the current working
directory:
/>fixfile *.gif

The preceding command by default moves all .gif files in the working directory to the
public area, because HTML/OS considers all image files to be public files (unless you
specify otherwise in the HTML/OS control panel). Any file that is in its correct location
will go untouched. The fixfile command displays a list of the files it moved and a
success or failure message next to each file name.

Chapter 2: File Management 31

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 31

The fixpublic Command

The fixpublic command moves files into the public (htdocs) area. The fixpublic
command takes the following form:
/>fixpublic FILE

In this command, FILE can be one or more files. To make all .gif files in this directory
public, issue the following command:
/>fixpublic *.gif

This moves all .gif files in the working directory into the public file area.

The fixprivate Command

The fixprivate command moves files into the private area (cgi-bin/private). The
fixprivate command takes the following form:
/>fixprivate FILE

In this command, FILE can be one or more files. To make all .html files in this directory
private, issue the following command:
/>fixprivate *.html

You generally won’t have to worry about changing the private/public attributes of a file
because HTML/OS takes care of this for you. When there is a problem with a file attribute,
it often means that the HTML/OS control panel needs to be tweaked. The next chapter,
“The Shell Environment,” explains how to access and manage this aspect of the HTML/OS
control panel.

Uploading and Downloading Files

Although most file-management work consists of creating, moving, and deleting files on a
server, it is often necessary to retrieve a file from the server or add a file to the server from
your local machine. Although you could use a third-party tool, such as FTP, to transfer files
between your local computer and the Web server, the Web shell provides integrated tools
for this kind of file transfer. The tools are easier to use than FTP and require no extra
software.

32 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 32

Uploading Files to the Server with the put Command

To upload files to the Web server, use the command put. The put command launches a
small window that prompts you for your local file, as shown in Figure 2.2.

Click the Browse button to browse your local file system for the file you want to upload.
After you choose a file, click the Upload button in the upload window. The file you
uploaded is saved to the Web server in the working directory with the same name it had on
your local computer. Alternatively, you can override this and specify the name manually.

Check the Close window check box when finished if you have only one file to upload.
Otherwise, leave it unchecked and upload as many files as necessary before closing the
upload window. You might want to run ls after an upload just to make sure that the upload
worked as you expected.

Chapter 2: File Management 33

Figure 2.2 The put file upload window prompts you for input.

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 33

Downloading Files from the Server with the get Command

To transfer a file from the server hosting the Web shell to your client computer, use the get
command. The get command opens a window with a list of all of the files supplied to it as
arguments. Click a filename in the pop-up window to download it to your local computer.

If, for example, you want to download all the .bb files in the working directory, you would
issue the following command:
/>get *.bb

If there are matches, a window opens with a list of the matching files. Each file is clickable
and invokes a download of the file to your local computer.

Summary

Moving files and directories around is an important part of managing a computer system.
The Web shell’s file-management tools are modeled closely on those of other shells and
have similar advantages arising from their pattern matching capabilities and English-like
syntax. The Web shell, however, in addition to providing these basic tools, has Web-based
extensions, such as put and get, which make Web-based file management easy and obviate
the need for the third-party tools to which so many shell users resort. It also provides tools
to search and view the content of text files. For HTML/OS file attribute management, it
provides a foolproof means of moving files between the public and private file areas.

The next chapter, “The Shell Environment,” details more of the Web-centric features that
distinguish the Web shell from its legacy counterparts.

34 Learning the Web Shell

pablo_chapter_2.qxd 11/1/04 11:41 AM Page 34

The Shell Environment

The Web shell is an ideal tool for developing and managing Web-based applications
because it allows you to create and edit files, view documents and images, and run
applications using the same interface that application users implement, the Web-enabled
browser. This important characteristic distinguishes the Web shell from its legacy
counterparts. The Web shell supports standard file-management commands, as do legacy
shells; but it does so in a Web-centric environment. This chapter discusses some of the
features of the Web shell that are not command specific, but rather relate to the working
environment of the Web shell.

The first part of this chapter explains how to read the output area of the Web shell and how
to retrieve and run prior commands. The second part explains how to create files with the
shell’s integrated editor and run them from within the editor. Then, it shows you how to run
applications and view images on your server. Finally, it explains how to use the Web shell’s
customization options to make these environmental features look and behave in a manner
that suits your needs.

The Command Prompt

When you first log in to the Web shell, you see a black screen with a text box at the bottom,
two buttons to the right of the command line, and a funny symbol, the slash forward arrow
(/>) at the top of the screen. The symbol at the top of the screen is the command prompt.

In traditional shells, the command prompt prompts you for a command. Next to it the cursor
moves along and displays your commands as you type them. The Web shell, because it is
Web based, doesn’t provide a real-time display of your command in the output area.
Instead, you type into a text box at the bottom of the screen. After you submit a command,
the command you typed appears next to the command prompt just as you typed it.

35

Chapter

33

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 35

In the Web shell, one of the purposes of the command prompt is to tell you what the current
working directory is. The area before the > character, delimiting the end of the command
prompt from your shell commands, contains the value of the current directory when you
issued the command. Because the shell output displayed on the screen before the command
you most recently issued is historical, only the most recent command prompt on the screen
tells you the current value of the working directory. All other instances of the command
prompt tell you what the working directory was when you issued the command printed
immediately to the right of it.

The Command History

As you work in the Web shell, the commands you type and the results of those commands are
displayed to the screen. Depending on how your copy of the Web shell is configured, multiple
commands and their output can be displayed at once in the order you submitted them.

If, for example, you type ls to get a directory listing and then change to the parent directory
and get another directory listing, you should notice several command prompts on the
screen, as the following example shows:
/apple/banana/cherry/>ls

FILE PRIVATE 19 04/13/03 23:44:11 pitted_fruits.txt

/apple/banana/cherry/>cd ..

/apple/banana/>ls

DIR MIRROR 144 04/12/03 11:16:43 cherry

FILE PRIVATE 12 04/13/03 23:45:31 tropical_fruit.xml

/apple/banana/>

Most of the command prompts are old, meaning they relate to the commands right next to
them, not the command that you are about to issue. The only command prompt that tells
you the current working directory is the one at the bottom. In the previous example, it is
/apple/banana/>.

Accessing Prior Commands

Because it is so common to have to issue a command that you have already submitted, the
Web shell provides a few ways to recall old commands. The old commands available to you
for recall are those that you issued through the course of the current Web shell session. (For

36 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 36

more information on Web shell sessions, see the note, “Web Shell Sessions,” in this
section.) The Web shell forgets all commands that you issued in previous sessions.

There are two ways to recall old commands: by using the up arrow in the text box, and by
using the exclamation operator with an argument.

Web Shell Sessions
Web shell sessions begin when you log in to the Web shell and end either when you log out,
or after a certain amount of idle time has elapsed. Depending on how your Aestiva copy is
configured, sessions become invalid after about 100 minutes of inactivity. When a new
session is started, your command history is reset. All other data and configuration information
persists.

Viewing the Command History with the history Command

The history command displays all the commands that you entered into the Web shell
during the current session. When you run it, it displays the command history with the older
commands at the top and newer commands at the bottom. In the left column, it displays the
command number, which is useful when you use the exclamation operator to run a prior
command.

The following is an example of a brief command history. If after you log in, you run ls, run
cd /test, then run the date command, the history command would produce the following
result:
/>history

1 ls

2 cd /test

3 date

/>

The history command produces a list of all of the commands that you issued to the Web
shell in the current session. On the left side of its output, it displays the command number
that you can use to reference the command as discussed in the following sections.

Chapter 3: The Shell Environment 37

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 37

Using the Exclamation Operator to Recall Commands

To run a prior Web shell command without retyping it, use the exclamation operator. You
can give two classes of arguments to the exclamation operator: an absolute command
number, or a relative command number.

Absolute Command Numbers

An absolute command number is one that is referenced as displayed by the history
command. The first command of the session is associated with the number 1, the second
with 2, and so on. To access one of these commands, type the exclamation mark with the
command number. For example, to run the second command cd /test using the command
history in the preceding example, you type !2. The Web shell replaces this command with
the value of the original command. When you run a command in this manner, you don’t see
the exclamation operator you just typed in the output area, but rather you see the original
command, in this case cd /test.

Relative Command Numbers

Sometimes it is easier to reference a command by its relative command number. To use
relative command numbers, precede the command number with a minus sign. The number
following the minus sign signifies how many commands ago the desired command was
executed. For example, to recall the prior command, run the statement !-1. This tells the
Web shell to run the previous command. To run the command issued two commands ago,
enter !-2.

Using the Arrow Keys to Recall Commands

The arrow key method to recall old commands is probably the most convenient, because it
consolidates browsing for commands and recalling them. Unfortunately, this feature is
available only to users of Internet Explorer. (If you use another browser, you’ll have to
settle for using the exclamation operator to recall old commands.)

If you are an Internet Explorer user, use the arrow keys while the cursor is in the command
input box to scroll through your command history. When you press the up arrow, you recall
commands that get progressively older; when you press the down arrow, you recall

38 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 38

commands that get progressively newer. The oldest command available to you when you
use the arrow keys is 20 commands old. If you want to access older commands, get a view
onto your command history with the history command and recall a command with the
exclamation operator.

Editing Files

Creating and editing text files are some of the more important tasks most users perform on
a Web server. The Web shell provides a simple but powerful tool for editing and creating
text files without having to leave the shell environment.

The command you use to edit files is edit, followed by the filename you want to create or
modify. To test the edit command, type the following command in the directory you want
to create your test file:
/mydir/>edit testfile.txt

The Web shell creates a new window with a large text box and a few buttons. This window
is the Web shell’s text editor, as shown in Figure 3.1. You can use this editor to alter or

Chapter 3: The Shell Environment 39

Figure 3.1 The Web shell editor window.

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 39

create any text file in the shell’s file system, as well as display the file as a Web browser
would see it when you are ready to run the page.

When you edit testfile.txt, if the file does not exist, the shell launches a blank editor
window. At the top left of the screen, you will notice the full path of the file you supplied
as an argument as well as a little note about the state of the file, in this case, New File.

The New File message tells you that the editor window was launched with a file that
doesn’t yet exist. This file is created only when you save your work. Until then, the filename
you have chosen represents an unrealized plan.

At this point, you may type something into the text area in the editor window. When you
are done, click the Save button at the right of the window. Clicking the Save button submits
the text in the text box to the server and saves the file under the name and location that you
specified when you issued the edit command. At that point you may continue to work in
the editor window and save the file as necessary. Every time you save, the file is overwritten
with the content you have in the text box.

Before you save, your work exists only on your local computer in your browser. You can
manipulate it any way you want without causing any network transmissions; but if you fail
to save your work and then close the browser, your work will be lost. It’s a good idea to
save your work often to minimize the possibility of losing your data.

Alternatively, if you make changes to your file and want to revert to the previously saved
version, you can click the Reload button in the editor window to populate the editor’s text
box with the previously saved version of the file.

When working in the Web shell’s text editor, you reap the benefits of working in a
networked environment but with the interface speed and flexibility of a client-side
application. When you are working with files in the editor, you can invoke the GUI features
of your browser’s text box, including text drag and drop, mouse-based text selection, find,
and find/replace. The client-side features of the Web shell’s text editor are limited only by
what your browser can do. For the majority of text editing and code development, your
browser’s text editing features are adequate. Though you have these features available to
you, you are still saving your files on the remote server, thereby giving you networked
access to your file, and freeing you from having to transfer the fizle to or from the server
manually.

40 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 40

After you’ve saved testfile.txt, close the editor window and place your cursor in the
command-input box in the Web shell. When you issue the command ls this time, you
should see the results of your save:
/mydir/>ls

FILE PRIVATE 12 04/14/03 01:12:47 testfile.txt

You have just created a file and saved it to the Web shell’s file system. Now when you edit
testfile.txt, the editor window shows the file’s contents. You can try to edit this file as
follows to see what happens:
/mydir/>edit testfile.txt

The editor window that opens contains the contents of testfile.txt. From now on, you
will be editing this existing file, and any changes you make via the Web shell editor will be
effective and permanent. Be careful when working on important files.

Running Files from within the Editor

Typically, you use the shell’s editor to create and edit Web-related, text-based files. Web
files are those that are run from a Web server and are displayed by a Web browser.
Depending on your environment and the type of the Web file, your Web server might
present the file to the client in a raw form, or it might recognize commands in the Web file
to run and upload the output to the Web client. The details of how servers and clients handle
different types of files are largely unimportant to you. What matters is the result when a
browser requests a file from your server. That is why the Web shell runs files just as the
Web server and browser will process them.

The Web shell provides a simple and effective tool with which to run your Web-based files. It
opens a new browser window with the URL of the file you want to run. The server and browser
take care of the rest. For simple, free-standing HTML or scripting files, this process works fine.
For more complex files that depend on form variables, you can launch the entry page to your
application with this process and leave it open while you do your development work.

For now, you create a simple text file with the editor and run it from within the Web shell.
If you don’t have a Web shell session available to you, log into one now:

1. If you don’t have a test directory, create one with the following command, and
move into it:

/>mkdir mytest

/>cd mytest

/mytest/>

Chapter 3: The Shell Environment 41

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 41

2. Next, launch the editor and create your test file with the following command:

/mytest/>edit hello.text

3. You can name the test file whatever you want; but make sure that your file has the
.text extension, because a different extension could cause the server and
browser to behave in unexpected ways.

The example file used in this demonstration, hello.text, is a simple text file.
The .text extension will likely be unknown to the server and browser and will
therefore be treated as a simple text file. Most default configurations don’t
perform processing on text files as they do on files created in a specific scripting
language, so this will yield a simple example.

4. When the editor window opens, type anything you like in the text area, although a
simple statement like Hello World! will do. When you are finished, click the
Save button to save your file to the server.

5. Then click the Run button at the top right of the screen; a new browser window
launches with appropriate the URL filled in, and the contents of your file in the
browser window as in Figure 3.2. Read the note “Editor URLs” for more
information on the value of this URL.

42 Learning the Web Shell

Figure 3.2 Running a file from within the Web shell editor opens a new window.

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 42

6. The contents of your browser window should now display the text you entered
into your .text file. At this point, if your editor window is still open, edit the
content of the file, and click Save to commit your changes to the server. Then go
back to the browser window launched by the Run command and reload that page by
clicking the Refresh or Reload button, or by clicking the URL and pressing Enter.

The changes you made in the shell editor should be reflected in the newly refreshed page
in your browser when the page finishes loading.

Editor URLs
You might notice the value of the URL when you reload the page. The path to the file in the
URL should be the same as that of the file in the Web shell file system. This is because the
Web shell’s file system has the same paths as your Web server. Underneath, at the operating
system level, the paths to your Web files also contain the values of the paths to your
document root. On the Web, as with the Web shell, file paths are relative to the path to the
document root of your server.

Editing an HTML File

In this section, you create and run a very simple HTML file. If you don’t know any HTML,
that’s okay because this section uses only the most rudimentary HTML.

1. In your test directory, create a new file with an .html extension.

/mytest/>edit hello.html

2. Because the browser will expect this to be an HTML file, create a simple HTML
document. If you don’t know HTML, you can try this:

<html>

Hello World!

</html>

3. Save and run this file by clicking the Save and Run buttons in the editor. If you
followed the example in the previous section, the result in your browser should
look somewhat familiar, reading simply Hello World! with no special
formatting. This time though, the URL in your hello.html window should be
different from that of hello.text. It should contain an auto-generated URL that
doesn’t explicitly reference hello.txt. This encoded URL is the result of the
Aestiva engine running the page and looking for Aestiva code to run before it gets
sent to the browser.

Chapter 3: The Shell Environment 43

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 43

Creating and running HTML and other text-based files comprises the majority of your
development tasks and has been made easy with the Web shell. Because the Web shell
creates a new window for each editor session, you can have multiple editor windows open.
After you become accustomed to using this method of Web development, you’ll likely find
it convenient. A great deal of Web development has been accomplished using the simplicity
and versatility of the Web shell’s editor. For many users, the Web shell’s editor is the
primary motivation for using the Web shell.

Running Applications

Now that you know the basics of creating and running a Web-based file using the Web
shell’s editor, you can run a file from the command line. In this section, you run the file that
you created in the previous section from outside the editor. Later, you learn how to set up
your environment to run general dynamic files.

Running hello.html from the Command Line

Close your editor windows and if you need to, change to the directory where you saved the
file you created by typing the following command:
/mytest/>run hello.html

The Web shell opens a new browser window displaying the file hello.html. You might
not consider this to be running a file because you are viewing it in your browser, but
HTML/OS makes the assumption that your text-based Web files (as opposed to, for
example, images and PDFs) are either script-based files, or are components in a Web
application or Web site. In the Web shell, the run command encompasses all text-based files
that you might want to view in your Web browser.

Be careful when you use the run command, because many files, and especially many of the
dynamic .html files that ship with Aestiva, won’t work when you try to run them by
themselves. Typically, in a Web application, there are only a few points of entry to an
application. If you know what these entry points are, you can run those files to make the
application work.

If, for example, you were creating a shopping cart application, running the cart page directly
wouldn’t work as well as running through the process of adding an item to your cart and
then viewing it. In this case, if you were editing the cart page, you would have to have the

44 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 44

process leading up to the cart page in place while you did your testing. Running the cart
page as a free-standing page wouldn’t produce the desired results. In these cases, use the
Run button in the shell editor or issue the run command on the command line on the start
page of the application and keep that window open for testing as you work.

Running Dynamic Pages

In the Web shell environment, when you run an HTML file, the Web shell runs it through
the HTML/OS engine. Later versions of the Web shell might have the ability to run HTML
files normally, but for now, if you want to launch an HTML file from the Web shell, it has
to run through the HTML/OS engine. This means that you can add HTML/OS code to your
file and it will render properly without configuration headaches. For example, alter
hello.html to look like the following:
<html>

Hello World!

It is now <<now>>

</html>

Chapter 3: The Shell Environment 45

Figure 3.3 When HTML/OS code is added to the hello.html file, it is parsed and displayed
automatically.

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 45

The newly added line contains the text, It is now, followed by an embedded HTML/OS
statement, now, contained within double angle brackets. The statement within the double
angle brackets is HTML/OS code that gets expanded by the Aestiva HTML/OS engine. If
you want to write HMTL/OS code, use the double angle brackets to encapsulate HTML/OS
code and distinguish it from HTML. When you run the preceding HTML file, you should
get a result like that in Figure 3.3.

If you are familiar with HTML/OS, you can create HTML pages and add HTML/OS code
as you need to.

On the other hand, if you want to run files in another scripting language, such as PHP, you
will have to do two things:

1. Give your files an extension other than .html or .htm. The extensions .php or
.phtml are good choices for PHP files.

2. Set up your Web server to be able to parse your scripting files when they are run
on the public side (outside of the cgi-bin or other script directories).

After you do this, the Web shell treats your scripting files as public text documents and
won’t try to run them through the HTML/OS engine, and your Web server treats them as
dynamic documents because of their file extension.

Viewing Images

To view an image on your server from within the Web shell, issue the view command with
the images you want to view as file arguments, as in the following command:
/images/>view img1.gif

As with the edit command, the view command opens a new window with the file
presented as the Web site would display it to a common client. In this case, the image you
specify is embedded into a page in a new Web browser window. This window displays the
image as well as path to the image on your server. Image paths are displayed, in part,
because the view command is capable of displaying multiple images in a folder at one time.
If, for example, you want to view all the .gif images in your current working directory, you
could issue the following command:
/images/>view *.gif

46 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 46

The previous command launches a new browser window containing all of the .gif images
in the /images directory. The file argument in this example, *.gif, matches all files in the
working directory that end with .gif. (For more information on using the asterisk
character at the command line, refer to Chapter 2, “File Management.”) You can try this
now on a system directory in the Aestiva environment, /apps/bundlebee/, by issuing the
following commands:
/>cd /apps/bundlebee

/apps/bundlebee/>view *.gif

After you run these commands, the view command creates a new window that displays all
the .gif files in this directory. Above each image is the path to the image in the Web shell’s
file system. The view command, because it runs in a browser, supports any image file type
that your browser supports. Typically, this means files that end in .gif, .jpg, and .bmp.
You can view any combination of image files in a view window.

Setting Shell Preferences

Now that you know how to edit files and view images, you will learn how to configure the
Web shell to your liking by editing the shell’s preferences.

The command that edits the shell’s preferences is called set. When you run set by itself,
it displays the current preference values:
/>set

autoscroll on

backgroundcolor #000000

fontface courier new

fontsize 10

inputcolor #6699cc

inputsize 80

outputcolor #999999

runheight 500

runwidth 900

scrollbuffer 40

showbuttons on

workingdircolor #cfcf99

/>

Chapter 3: The Shell Environment 47

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 47

When you edit one of these values, it has an immediate and lasting effect. The next time
you or someone else logs in to your copy of the Web shell, the preferences as saved in the
previous session are recalled.

To set a shell environment value, run the set command with the name and its new value as
arguments, as in the following example, which changes the background color of the Web shell:
/>set backgroundcolor #000033

Then issue the set command again to display the current environment values in the Web
shell. The results should look similar to the following:
/>set

autoscroll on

backgroundcolor #000033

fontface courier new

fontsize 10

inputcolor #6699cc

inputsize 80

outputcolor #999999

runheight 500

runwidth 900

scrollbuffer 40

showbuttons on

workingdircolor #cfcf99

/>

The command you issued to change the background color of the shell had an immediate
effect. It also changed the values of Web shell’s preferences. Unless you are fond of the blue
background, run the following command to revert to a black background color:
/>set backgroundcolor #000000

Generally, the set command, when not run alone, requires a parameter and a value after the
set command, in the following form:
/>set [parameter] [value]

48 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 48

The parameter can be any of the setting parameters displayed by running the set command,
such as backgroundcolor in the previous example. The following are the environment
parameters that you can manipulate with the set command:

• The autoscroll parameter tells the shell whether to scroll the window to the
bottom when the output of shell commands goes off the page. By default this
parameter is set to off, because it makes some Macintosh browsers misbehave.
Because it is easier to work with this parameter set to on, turn it on when you get
a chance. If you are one of the unlucky few whose browsers fail, turn it back off,
although you’ll have to do this blindly, because your browser won’t display
anything until it is turned off.

• The backgroundcolor parameter sets the background color for all Web shell
windows, including the image viewer, the editor, and the main window. Alter this
parameter with caution, because while setting it you could make text invisible and
have to fix the problem in the dark. Browsers have a limited color vocabulary that
includes words like red, orange, lightgreen, and so on. If you want more
control, you can use an HTML color value in the form of #xxxxxx, where x is a
hexadecimal character (between 0–9 or A–F). The first two characters correspond
to red, the second two to green, and the third to blue. All zeroes signify black and
all F’s signifies white.

• The fontface parameter accepts any value that your browser will accept. Some
examples are courier, verdana, sans, serif, and times. If you want to set the
font face to a value that contains spaces, use quotes around the font name, as
shown in the following example. (Issuing command arguments with spaces is
covered in the next chapter.) If you choose a font face that your browser doesn’t
recognize, the browser chooses a font for you.

/>set fontface “courier new”

• The fontsize parameter sets the font size, measured in pixels, throughout the
Web shell. Set it to a value above 8 to avoid painfully miniscule fonts. If you
want a slightly larger font than the one the shell ships with, run this command:

/>set fontsize 12

This command bumps the font size up to 12 pixels and should be easier on your
eyes than the default 10 pixels. Keep in mind though that less data will fit on your
screen and in the editor window as you increase the font size. Also, note that
when you change the font size, you alter the size of the Web shell editor’s main
text area proportionately. You will probably have to edit the editor’s preferences

Chapter 3: The Shell Environment 49

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 49

in this case to make it fit in the browser window.

• The inputcolor parameter sets the color of text that you type and buttons that
appear throughout the Web shell, including command-line and pseudo command-
line text, as well the text in the editor text area. Be careful when setting this color
to maintain good contrast against the background color, because your text might
disappear altogether, which would give you trouble when trying to revert.

• The inputsize parameter sets the size of the command-line input box at the
bottom of the screen in character units. Larger input sizes show you more of what
you type if you are issuing long or multiple commands, and smaller input sizes
accommodate smaller shell windows better.

• The outputcolor parameter sets the color of any text generated by the Web shell
as the result of a command. The difference in color makes it easier to distinguish
your own commands from the command prompt and from the system output.

• The runheight parameter tells the Web shell how high to make pop-up windows
when you issue a run command. You specify this value in pixels. (Keep in mind
that your screen height is on the order of 1,000 pixels.)

• The runwidth parameter tells the Web shell how wide to make pop-up windows
when you issue a run command.

• The scrollbuffer parameter tells the Web shell how much content to keep on
one screen before letting it drop off and be displaced by new content. A
scrollbuffer value of 40 allows up to 40 lines of output to be displayed on the
screen, consisting of any number of commands and their output, before it stops
displaying old output after subsequent commands are run. A large value of the
scrollbuffer keeps a lot of content on the screen. You might find this
convenient if you need easy access to the output of commands you issued several
commands ago; but a large scrollbuffer means that your browser has to
download that much more information every time you issue a command. Don’t
forget to turn on the autoscroll parameter if you choose a scrollbuffer value
that is larger than your shell window.

• The workingdircolor is the color of the command prompt in the output area of
the Web shell. You can set it to any valid HTML color value, as with the other
color parameters.

50 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 50

Setting Editor Preferences

The Web shell editor has its own preference editor. Because it is GUI based, and not
command-line based, the preferences menu is a GUI as well. To access editor preferences,
open an instance of the editor window by issuing any edit command.
/>edit foo

Click the Preferences button at the bottom of the editor window, shown in Figure 3.4. A
new, smaller window opens to let you edit the attributes of the editor environment, namely
the size of the editor window, the size of the run window, and the size of the editor’s text
area.

The editor preferences window enables you to alter three pairs of values: the initial size of
the edit window, the initial size of the run window, and the size of the text area in the editor
window.

• The edit window size determines the size of the main edit window when it pops
up after you issue an edit command. Set this value to a large size that still fits
on your screen to be able to display the greatest amount of text data.

• The initial size of the run window determines the size of the window that
launches when you click the Run button in the editor. It is probably best to set

Chapter 3: The Shell Environment 51

Figure 3.4 The editor preferences
window changes how the editor
behaves.

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 51

this to a value that is smaller than the edit window’s initial size so as not to cover
and hide the editor window when running an application.

• The text area size is the width and height of the editor text area in character units.
Set these values as high as they can go while keeping the text area within the
boundaries of the edit window.

Click the Save button when you want to save any changes you might have made. Clicking
Cancel closes the window without saving your changes.

When you make a change to the editor preferences, it won’t be reflected until you reload
the editor window. To reload the window, click the Save button if you have text that you
want to save, or click the Reload button if you want to reload an existing file.

Mouse Features

Although one of the most important benefits of the Web shell is its ability to accomodate
users interested in keeping their fingers on the keyboard, the Web shell also provides a
means of navigating the file system and performing basic tasks using a mouse. Even though
it doesn’t look like it, the output of the ls command and the command line are actually
clickable. When you click a clickable element in the Web shell environment, it issues a Web
shell command that appears in the command history as if you had typed it manually.

Move into a directory that has multiple files and subdirectories with the command cd, and
then issue the command ls. The following code illustrates the results of issuing this
command:
/mydir/>cd /apps/shell

/apps/shell/>ls

DIR MIRROR 72 04/07/03 13:05:27 bin

DIR MIRROR 80 04/07/03 13:05:27 conf

DIR MIRROR 48 12/17/01 16:15:23 etc

DIR MIRROR 48 01/18/02 15:42:42 help

FILE PUBLIC 2148 04/07/03 13:05:27 app_icon_shell.gif

FILE PRIVATE 68 04/07/03 13:05:27 app_install.txt

FILE PRIVATE 30757 04/07/03 13:05:27 fcns.lib

FILE PRIVATE 613 04/07/03 13:05:27 index.html

FILE PRIVATE 3191 04/07/03 13:05:27 inputframe.html

52 Learning the Web Shell

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 52

FILE PRIVATE 3136 04/07/03 13:05:27 outputframe.html

FILE PRIVATE 499 04/07/03 13:05:27 parent.html

FILE PRIVATE 2148 04/07/03 13:05:27 shell.gif

When you move the mouse pointer across the filenames, the directories and files listed by
ls are clickable. When you click a directory in the Web shell, you are moved into that
directory as if you had typed the command cd. Try it on the bin directory. After you click
bin, the command appears on the pseudo command line:
/apps/shell/>cd /apps/shell/bin

/apps/shell/bin>

When you click a file, the shell runs a particular command with that file as its argument.
The Web shell determines which command to run against what file types by comparing the
file’s extension with values in a customizable file.

The file that tells the Web shell what to do when you click a filename generated by the ls
command is called associations.conf, and it lives in the /apps/shell/conf directory.
This file consists of two columns: The left column lists file extensions, and the right column
lists shell commands. To associate a command with an extension, edit the right-hand
column value, or add it to the list if it’s not already present. When you click a file, the Web
shell runs the command you supply in the right-hand column with the filename you click
as its argument. If for example, you want to associate the cat command with all files that
end in txt, edit associations.conf so that the line with txt in the left column has cat
in the right column. After you do this, clicking a .txt file causes the cat command to run
with the file you clicked as its argument, as if you had issued the command manually.

Summary

The shell environment is unique in that it allows you to run and edit Web-based files in a
command-line environment, but with the flexibility and ease of use more commonly found
in GUI-based environments. Although the Web shell contains the features that make it an
integrated development environment for the Web, it also maintains its command-line
heritage by supporting the standard commands covered in Chapter 2, as well as some of the
more arcane but powerful command line features, such as data redirection, a concept
covered in the next chapter.

Chapter 3: The Shell Environment 53

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 53

pablo_chapter_3.qxd 11/1/04 12:16 PM Page 54

Redirection

Web shell commands in general read data from an input channel, perform tasks, and print
data to the screen. This is true for all commands even though some commands don’t appear
to require any input, and other commands don’t appear to produce any output.

If you were to draw a picture representing a command, you might draw a box with a tube
representing data in, and a tube representing data out. You pass data to a command from the
command line through the use of arguments; the command reads those arguments, performs
its tasks, and displays any results on the screen.

By default, a command gets its input from the arguments you send to it and sends its output
to the screen. In the Web shell, you can divert — or redirect — data from the output stream
of a command into a file or into another command. When you divert data into a file, it is
called “redirection.” When you divert data into another command, it is called “piping.” This
chapter covers these two basic concepts, as well as two common commands for which you
would use data piping, the sort command and the grep command.

55

Chapter

44

command

file

screen
shell

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 55

Introducing Redirection

Redirection is the diverting of data from the output stream into a file. When you redirect
data into a file, the data that would otherwise be displayed to the screen is written to a file.
This is useful when you want to archive the output of a command for future reference.

The Web shell support two kinds of redirection, one that uses the > operator and creates new
files or overwrites existing ones, and another that uses the >> operator and appends to files.

Redirection with the > Operator

When you want to write the output of a command to a file, use the > operator. The >
operator redirects the data that would otherwise be displayed on the screen and writes it to
the file you specified after the > character. If, for example, you want to record the names of
the files in the working directory, you issue the following command:
/>ls > filelist.txt

This command runs the ls command, but writes its output to a file called filelist.txt.
Nothing is displayed on the screen. Instead, the results of the ls command are written to
filelist.txt. If filelist.txt already exists, the Web shell overwrites it. Be careful
when redirecting output, because the Web shell deletes and replaces your data if you
redirect output to an existing file.

To see the contents of the ls command, you have to open the file and view its contents. Use
the cat command to verify the results:
/>cat filelist.txt

DIR MIRROR 984 04/01/03 08:11:16 apps

DIR MIRROR 128 04/17/02 15:11:13 backup

DIR MIRROR 48 10/16/01 10:03:19 docs

DIR MIRROR 48 04/22/03 00:04:11 mydir

DIR MIRROR 80 04/15/03 02:50:54 mytest

DIR MIRROR 904 04/25/03 09:18:44 system

DIR MIRROR 952 04/14/03 22:47:02 test

DIR MIRROR 80 05/16/02 15:49:50 upload

FILE PRIVATE 10 04/25/03 09:18:43 .htaccess

FILE PRIVATE 3208 03/27/01 08:27:45 login.html

56 Learning the Web Shell

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 56

FILE PRIVATE 36 04/14/03 01:10:36 newfile.txt

FILE PRIVATE 1571 04/25/03 09:18:44 restart.html

FILE PRIVATE 85 04/25/03 16:21:51 test.html

FILE PRIVATE 49 03/12/03 17:00:32 unscramble.html

Here you see the results of the ls command, not as the output of a direct call to ls, but by
reading the contents of a file created with redirection from the ls command.

It might help to know that the > operator is not a command attribute. It is not like a switch
or an argument to a command — something handled by the command itself — and possibly
subject to the interpretation of the given command. The > operator works independently of
the command as a part of the Web shell environment. Therefore, the > operator behaves in
exactly the same way for all commands and can be used for all commands. You could, for
illustration, redirect the output of cd into a file, as in the following example:
/>cd mydir > empty.txt

The cd command would change the working directory; but because cd produces no output,
the Web shell creates an empty file with the name provided.

More typically, you might want to save the output of an expensive command (one that takes
a while to run, or one that produces a great deal of output) to a file. If, for example, you
want to keep a record of all .html files in your file system, you could issue the following
command:
/>find “*.html” > myhtmldocs.txt

This would generate a list of paths found by the find command and save them in a file for
future reference. You wouldn’t have to run the find command again to retrieve your list of
.html files, and you could keep a log of your file system for future use.

The >> Operator

The >> operator works exactly like the > operator; but it appends to an existing file, instead
of creating a new one or overwriting an existing one. You probably won’t need to use this
functionality very much, if ever, but it offers a convenient shortcut to manual file
manipulations if you need it.

In the preceding example, if you wanted to put a date stamp on the myhtmldocs.txt
document, you could use the >> operator to append the date at the bottom of the file:

Chapter 4: Redirection 57

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 57

/>date >> myhtmldocs.txt

The file myhtmldocs.txt might look like this after appending the date:
/system/desktop/bin/new_folder.html

/system/desktop/bin/library.html

/system/desktop/bin/add_font.html

/system/desktop/bin/custom.html

/system/desktop/bin/colortable.html

/system/desktop/bin/new_icon.html

/system/desktop/bin/file_select.html

/system/desktop/bin/start_link.html

/system/desktop/bin/overwrite.html

/system/desktop/bin/settings.html

/system/desktop/bin/function.html

/system/desktop/bin/launcher2.html

/system/desktop/bin/advanced.html

/system/desktop/bin/close.html

/system/desktop/bin/upload.html

/system/desktop/bin/icon_select.html

/system/desktop/index.html

04/28/2003 21:28

More likely, you would want to put the date at the top of the file, in which case you would
reverse the order of the commands:
/>date > myhtmldocs.txt

/>find “*html” >> myhtmldocs.txt

You can see the results of the preceding commands by running cat against the file:
/>cat myhtmldocs.txt

04/28/2003 21:28

/system/desktop/bin/new_folder.html

/system/desktop/bin/library.html

/system/desktop/bin/add_font.html

/system/desktop/bin/custom.html

/system/desktop/bin/colortable.html

58 Learning the Web Shell

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 58

/system/desktop/bin/new_icon.html

/system/desktop/bin/file_select.html

/system/desktop/bin/start_link.html

/system/desktop/bin/overwrite.html

/system/desktop/bin/settings.html

/system/desktop/bin/function.html

/system/desktop/bin/launcher2.html

/system/desktop/bin/advanced.html

/system/desktop/bin/close.html

/system/desktop/bin/upload.html

/system/desktop/bin/icon_select.html

/system/desktop/index.html

Because in this example myhtmldocs.txt was created with the date command, the date
appears at the top of the file. The results of the find command were appended to produce
the desired result.

The usefulness of the >> operator is limited when you consider the stock commands
supplied by the Web shell. It is not until you create your own Web shell commands (a topic
covered in Chapter 6, “Creating Custom Commands,”) that the >> operator becomes
particularly useful. If, for example, you created your own Web shell command that analyzes
a text-based server log file and displays the results to the screen, you could run it
periodically and append the results to a log file when you needed to. This way, you could
keep a history of your server activity but you would have the flexibility to run the custom
command without necessarily writing to a file.

Piping Data into Commands with the | Operator

Piping is a lot like file redirection in that it redirects the output of a command. Piping is
different, though, because instead of redirecting output to a file, it redirects output to
another command. You use piping to make the output of one command the input of another
command in a compound command statement. The result is that you don’t see the
intermediate data stream but rather the final output after all the commands have processed
their data.

This section explains how to use piping by using some commands that are typically used to
process piped data. These command are explained here in subsequent sections that digress

Chapter 4: Redirection 59

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 59

slightly from the topic of redirection, but which will help you use piping with these
commands to process data at the command line.

The way you redirect output to a command is with the pipe operator (|). In general you put
the pipe operator between commands to redirect data from one command to the other. The
general form of the pipe operator is the following:
/>command1 | command2

The preceding statement tells the Web shell to run command1, redirect the output of
command1 to the input of command2, and then to run command2. In this example, command1
has to produce some output, and command2 has to require input and must be able to read
the format of command1. If this is the case, command2 will display its output to the screen.

Because in this example, command2 produces output, you can pipe this output into yet
another command, as in the following example:
/>command1 | command2 | command3

The preceding example runs command1, pipes its output into command2, which runs and
pipes its output into command3, which runs and displays its output to the screen.

Before demonstrating how piping can be useful in the Web shell, a few commands that are
commonly utilized when using piping have to be covered. These commands are the sort
command, the grep command, and the wc command. The following sections explain how
to use these commands in general, and then explain how to use them with piping.

The Sort Command

The sort command sorts the lines of a text document and returns the result. For example,
suppose you had a file called ages.txt on your system with the following content as
viewed by the cat command (create the file with the edit command to test this example):
/>cat ages.txt

John 28

Alice 26

David 31

You could view this file in sorted order by issuing the sort command with the filename as
its argument, as in the following example:

60 Learning the Web Shell

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 60

/>sort ages.txt

Alice 26

David 31

John 28

By default the sort command sorts in ascending alphabetical order on the first column,
where columns are delimited by any number of spaces. If you want to sort a text document
on a column other than the first column, you could specify the column number with the –k
switch. Put the column number after the –k switch to achieve this. If, for example, you want
to sort ages.txt on the second column, you would use the –k switch; but you would
include the –n switch to indicate that the second column is a numerical column, as in the
following example:
/>sort –nk 2 ages.txt

David 31

John 28

Alice 26

By default, numerical sorts are performed in descending order, so to sort ages.txt in
ascending order on the age column, add the –r switch to reverse the sort order, as in the
following example:
/>sort –rnk 2 ages.txt

Alice 26

John 28

David 31

The –k switch tells the sort command that the argument that immediately follows it is the
column number on which to sort.

If you try the preceding command without the –n switch, you might notice that it doesn’t
work correctly. That’s because sort sorts alphabetically by default, and you want to sort
on a numeric column. An alphabetical sort treats words, even “words” that contain only
numbers, such that smaller values have higher precedence regardless of their size. For
example, alphabetically, aab has a lower precedence than ab; in a similar manner, 112 has
a lower precedence than 12. To fix this, use the –n switch to sort numerically.

Additionally, if you try the preceding command and put the -k switch somewhere other
than at the end of the list of switches, the command fails. The –k switch is a special switch
that requires an argument and must therefore appear immediately before that argument.

Chapter 4: Redirection 61

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 61

Now that you know how the sort command works, you can use it to demonstrate data
piping. In the preceding examples, the data on which the sort command was operating was
the content of the file whose name was supplied as an argument. If you wanted to act on
data that was not in a file, like, for example, the output of another command, you would
pipe that data into the sort command and omit any filename argument.

For example, to sort the output of the ls command on file size, you would issue the
following command:
/>ls | sort –rnk 3

FILE PRIVATE 10 04/25/03 09:18:43 .htaccess

FILE PRIVATE 36 04/14/03 01:10:36 newfile.txt

DIR MIRROR 48 10/16/01 10:03:19 docs

DIR MIRROR 48 04/22/03 00:04:11 mydir

DIR MIRROR 48 10/16/01 10:03:19 docs

DIR MIRROR 48 04/22/03 00:04:11 mydir

FILE PRIVATE 49 03/12/03 17:00:32 unscramble.html

DIR MIRROR 80 04/15/03 02:50:54 mytest

DIR MIRROR 80 05/16/02 15:49:50 upload

FILE PRIVATE 85 04/25/03 16:21:51 test.html

DIR MIRROR 128 04/17/02 15:11:13 backup

DIR MIRROR 904 04/25/03 09:18:44 system

DIR MIRROR 952 04/14/03 22:47:02 test

DIR MIRROR 984 04/01/03 08:11:16 apps

FILE PRIVATE 1571 04/25/03 09:18:44 restart.html

FILE PRIVATE 3208 03/27/01 08:27:45 login.html

There is a lot going on in the preceding command. First, the ls command is run, and its
output is piped into the sort command. The sort command processes this data and sorts
it numerically (as specified by the –n switch), on the third column (as specified by –k 3)
in reverse/ascending order (as specified by the –r switch). Because the ls command
displays file size data in the third column (for details on how the sort command
distinguished columns see the note, “How the sort Command Recognizes Columns”), this
command effectively sorts files and directories by file size.

How the sort Command Recognizes Columns
When you use the sort command, you sort data on one of its columns. The sort command
delimits columns by spaces. Any number of spaces constitutes a column delimiter. Columns,
therefore, are the text areas between clusters of spaces in a given file or data stream.

62 Learning the Web Shell

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 62

The wc Command

The wc command counts the number of words and lines in a document. If you give the wc
command a file argument, it counts the number of words and lines in that file. If, for
example, you had a server log that contained one line for each page request, you could
count the number of requests by running the wc command to determine the number of lines
in the file. For example, to count the number of lines and words in mylog.txt, you issue
the following command:
/>wc mylog.txt

words: 4011

lines: 313

The wc command in the preceding example found 4,011 word and 313 lines in the file
mylog.txt.

To count the number of files returned by the ls command, you could pipe the results of the
ls command into wc and look at the line count. Because ls prints a line for each file and
directory, the number of lines ls returns is the number of files it finds, as shown in the
following command, which tells us that there are 39 .gif files in the working directory:
/images/>ls *.gif | wc

words: 142

lines: 39

The grep Command

The grep command is the command that is most commonly used in conjunction with
piping. The grep command searches its input for lines containing a match to a pattern you
supply as an argument. By default, grep prints the lines that contain a match of the given
pattern. You use grep by giving it a file argument, such as an explicit filename like
“aztec.html”, or a file glob, such as a*, and a pattern consisting of a clusters of letters
and wildcards (asterisks), and it finds lines containing the pattern you specified in the files
you specified. Alternatively, you can pipe data into grep, and it finds lines in the piped data
stream that match the pattern you supplied as an argument. If, for example, you wanted to
print only the directories in the working directory, you would issue the following command:
/>ls | grep dir

DIR MIRROR 984 04/01/03 08:11:16 apps

DIR MIRROR 128 04/17/02 15:11:13 backup

Chapter 4: Redirection 63

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 63

DIR MIRROR 48 05/01/02 13:46:06 debug

DIR MIRROR 48 10/16/01 10:03:19 docs

DIR MIRROR 48 04/22/03 00:04:11 mydir

DIR MIRROR 80 04/15/03 02:50:54 mytest

DIR MIRROR 744 09/12/02 15:47:56 pak

DIR MIRROR 904 04/25/03 09:18:44 system

DIR MIRROR 952 04/14/03 22:47:02 test

DIR MIRROR 80 05/16/02 15:49:50 upload

In this example, the ls command first generates data relating to files in the working
directory. This data is then piped into grep, which throws out lines not containing the word
dir and returns the rest. It also means that, in this case, a file with dir in its filename will
remain in the list. The result printed to the screen is a list of directories in the current
working directory.

Multiple Pipes

There is no artificial limit to the number of pipes you can use in a single command. If, for
example, you want to view only the directories in the current working directory and sort the
output by file size in ascending order, you could issue the following command, using two
pipes.
/>ls | grep dir | sort –rnk 3

This compound command generates a list of files in the working directory with the
command ls, pipes those results into grep, which strips out all lines without the value dir,
then pipes those results into the sort command, which sorts the results in numerically
reverse order on the third column.

If you want to save the results, you redirect to a file at the end of the statement as follows:
/>ls | grep dir | sort –rnk 3 > mydirs.txt

Summary

Using piping and redirection is a powerful way of managing data at the command line. The
piping and redirection operators allow you to preserve data that you generate at the
command line, and to channel data dynamically from one command to another without
having to use intermediate files.

64 Learning the Web Shell

pablo_chapter_4.qxd 11/1/04 12:00 PM Page 64

Useful Web Shell Commands

In this chapter, you create a simple Web page from the ground up and use some of the
commands that distinguish the Web shell from a traditional shell. These commands are
covered during the course of a tutorial consisting of creating a Web page, retrieving image
files from a remote source, and packaging the page and its related files into a single
installation file for deployment on any other Web shell system. The Web shell, being a
development and deployment environment, makes these aspects of Web development
simple.

This chapter begins by walking you through the creation of a Web page modeled on an
existing Web page at www.aestiva.com, which lists the operating systems on which you
can run the Web shell. After this Web page is completed, you learn how to add image files
to your Web server across the network using the Web shell’s file transfer commands and
then add these images to your Web page. When the page is completed, you package all of
these files into a single archive file that can be used to redeploy the Web page and all of its
images.

Creating a Simple Web Page that Lists Supported Platforms

In this chapter, you create a Web page modeled on an existing Web page on the Aestiva Web
site. The Web page will list all of the platforms on which the Web shell can be deployed.
There are three steps to completing this Web page. The first step is to create the HTML
document. The second step is to retrieve the image files from the Aestiva server and put them
on your Web server. The last step is to add the image links to the HTML page and verify your
work. After the page is completed, you pack the files you created into an installation file for
deployment on other servers that use the Web shell’s application packing tool.

65

Chapter

55

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 65

Creating the HTML Document

First, you will need to create a directory where you will add your files. Call this directory
platforms to indicate that the document will relate to the platforms (operating systems) on
which the Web shell can run.

To create the directory, run the mkdir command with platforms as an argument.
Remember that mkdir, like many shell commands, requires a filename argument with
either an absolute or a relative path. If you are in the directory in which the new directory
will reside, you need to supply only a relative path, as in the following example:
/>mkdir platforms

/>cd platforms

/platforms/>

Now you have a directory to hold the data. You put the document and image files in this
directory. Use the edit command to create the new document:
/platforms/>edit index.html

When you run this command, the Web shell creates a new edit window in which you will
put the contents of the index.html file.

66 Learning the Web Shell

Figure 5.1 The original Web page at www.aestiva.com.

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 66

After issuing the preceding command, you should have an editor window in front of you
with a blank text area. You will put the HTML for the index.html page in this text area.

The page that you’re going to model yours on can be found on the Aestiva Web site. To see
the original page, go to www.aestiva.com and click any of the operating system icons at
the bottom of the page. See the page in Figure 5.1, which shows a part of this page. The
Web page you create lists the platforms on which you can run Aestiva, and by extension,
the Web shell.

The following is the primary HTML content retrieved from a page posted on the Aestiva
site in February 2004. Add it to the text area in the editor window:
<html>

<head>

<title>Web Shell — Supported Platforms</title>

</head>

<body>

<h3>Web Shell — Supported Platforms<h3>

Apple MacOS X

Berkeley Systems Design (BSD)

Hewlett Packard

Linux

Microsoft Windows

Sun Microsystems — Cobalt Servers

Sun Microsystems — Solaris-based Servers

</body>

</html>

After you finish typing the HTML into the text area, save the file by clicking the Save
button. The page reloads and at the top of the editor, the status message should read
something like the following, depending on the Web server’s time when you saved it:
/platforms/index.html FILE SAVED 9:41 AM

The next step is to check your work. Click the Run button to launch a new window with
your Web page as it will appear when rendered by your Web browser.

Chapter 5: Useful Web Shell Commands 67

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 67

When you click the Run button, you should see a newly opened page like that in Figure 5.2.
If you see a page like this, you have finished the first step in creating your example page.

The process that you just completed involved writing HTML code and saving it to a server
across the network, then viewing the HTML page on that server from your local machine.
The process of creating content on a remote server and then testing that content can be
deceptively easy in the Web shell because you don’t have to do any explicit networking
activity. The network is an integral part of the application environment.

In the next section, you explore some of the more useful aspects of the Web shell’s
networking features by explicitly transferring image files across the Internet and onto your
Web server. You will eventually add these image files to your platforms Web page.

Adding Images to the Web Server

HTML/OS’ version of this page at www.aestiva.com includes an image next to each
operating system. The next step is to add these images to your page. You could easily
reference their addresses on Aestiva’s Web site directly in the HTML document, thereby
causing any visitors to the page to retrieve the image files from Aestiva, but that would be
undesirable because you would be “stealing” bandwidth from somebody else’s server, and

68 Learning the Web Shell

Figure 5.2 The platforms Web page lists the supported platforms.

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 68

you wouldn’t have control of the files you are linking to. Instead, you’ll have to add these
files to your server and reference them from the HTML document you just created,
index.html.

You could put the images directly inside of the platform’s directory, but it’s generally neater
to put images in their own directory. Create an images directory called images inside of the
platforms directory:
/platforms/>mkdir images

Now that you have a place to put your image files, you can transfer them from Aestiva’s
Web server to your Web server by using the put command.

Problems with Accessing Files via FTP

Historically, when developers wanted to move files around on the Web, they used File
Transfer Protocol (FTP), which is the most widely used way of transferring files on the
Internet. As the name indicates, FTP is not just an application; it’s an entire protocol,
distinct and independent of the protocol used by the Web, called Hyper Text Transfer
Protocol (HTTP). Part of what that means is that when you want to move a file with FTP,
your computer (the file destination computer) has to have an FTP client application running
(often confusingly called FTP), and the server (the file source computer) has to have a FTP
server running as well. A Web server won’t necessarily have an FTP server installed, and if
it is installed, it may not be configured to suit your needs. If you want to get a file from the
server, you have to log in with a username and password. After you are logged in, you have
to have permission to go into the directory that has the relevant files.

Using the put Command to Upload Web Files

The Web shell uses the put command as a substitute for FTP. It won’t always be able to
take the place of FTP, because the files you want may be in a directory not served by the
remote computer’s Web server. In that case, you can still use FTP to download the remote
file to your local computer and use the put command from there to upload the downloaded
files to the Web server. Otherwise, when it does serve your needs, the Web shell’s put
command is much more convenient and better integrated than FTP.

In this example, you copy the image files that you will reference from the index.html
page from the Aestiva’s Web server to your Web server. You do this by transferring the files

Chapter 5: Useful Web Shell Commands 69

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 69

from the source server to the destination server without using your personal computer as an
intermediary. You could, on the other hand, download files to your personal computer and
upload them, also using the put command, but that would require an undue amount of work
and network traffic, because you would be effectively transferring files from Aestiva’s Web
server to your local machine and then transferring the file again to your Web server, as
illustrated in Figure 5.3.

Conveniently, the put command supports copying files from one Web server to another,
without requiring that you use your client as an intermediary. To copy a file from a Web
location to your Web server, use the –u switch (you can think of the “u” as in URL).

The general form of the put command is the following:
put [-u URL] FILENAME

When you don’t use the –u option, the target filename is optional because it is inferred from
the source filename. When you do use the –u option, the target filename is required.
For example, to copy the image file at:
http://www.aestiva.com/aestiva/images/partners/mac_logo.gif

to a local file called /platforms/images/mac_logo.gif, run the following command:

70 Learning the Web Shell

Figure 5.3 The put command can either upload files from your personal computer or
transfer files from a Web server.

www.aestiva.com

www.aestiva.com

Web Shell Server

Web Shell Server

Local
Computer

Using put -u to transfer files from server to server

Using put in default mode

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 70

/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/mac_logo.gif

mac_logo.gif

This fetches the file located at the specified URL and creates a copy on your Web server named
mac_logo.gif. See the accompanying note, “The put Command and Connection Speed.”

The put Command and Connection Speed
When you run the put command with the –u option, the Web shell makes an HTTP request
from the Web server and writes the contents of the resulting file to the server’s file system.
Your client computer requests only that the transaction take place; it has no role in the
network transaction. That means that if the file were large, and if you were on a computer
with a slow Internet connection, the transfer could be fast, depending on the connection
between the shell Web server and the source Web server. Typically, the connection between
one Web server and another is quite fast, so these transactions are efficient, regardless of
the speed of the Web connection of your personal computer.

To view the newly created image file, run the view command with the filename as its
argument:
/platforms/images/>view mac_logo.gif

You should see the image appear in a new Web browser window, as shown in Figure 5.4.

Chapter 5: Useful Web Shell Commands 71

Figure 5.4 mac_logo.gif in a view window.

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 71

Now that you have the Macintosh logo on your Web server, you have to add the rest of the
images. Run the following commands to transfer the rest of the files:
/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/apple_logo.gif

apple_logo.gif

/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/bsd.gif bsd.gif

/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/digital_logo.gif

digital_logo.gif

/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/ht_logo.gif

ht_logo.gif

/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/linux.gif linux.gif

/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/sun_logo.gif

sun_logo.gif

Because typing all of the preceding commands would be tedious and subject to costly typos,
this is a good time to use the command history feature of the Web shell. The Web shell
remembers your previous commands and lets you recall these commands in several ways.
(For more details on accessing the command history, refer to Chapter 3, “The Shell
Environment.”) The most convenient way to recall a command is by using the up arrow on
your keyboard while the cursor is in the command input box. (This feature only works in
Internet Explorer, so if you are running another browser, you have to cut and paste your
commands into the input box to save typing.)

If you are running IE, press the up arrow to recall the first put command that you ran:
/platforms/images/>put –u

http://www.aestiva.com/aestiva/images/partners/mac_logo.gif logo.gif

Then you edit that command so it refers to the second file in the example,
apple_logo.gif. The only text values you have to change are mac to apple in the URL
and the filename. You can use the same technique to generate all the remaining put
commands.

72 Learning the Web Shell

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 72

Checking Your Work

When you are done putting all the image files onto the server, view the results by running
the view command with a wildcard file argument:
/platforms/images/>view *

Because the * character matches all files in the current working directory, the view
command runs against all of the filenames of the images you just uploaded. You should see
a window that displays all the matching images and their filenames, as shown in Figure 5.5.

Adding the Image Tags to Your Web Page

Now that you have the necessary images on the Web server and have demonstrated with the
view command that they are accessible from within a Web page, you have to add them to
the platform’s Web page. If you don’t have the editor window open for index.html, open
one now with the edit command:
/platforms/>edit index.html

Then add the image tags so that the HTML looks something like this:
<html>

<head>

Chapter 5: Useful Web Shell Commands 73

Figure 5.5 Viewing all the platform images.

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 73

<title>Web Shell — Supported Platforms</title>

</head>

<body>

<h3>Web Shell — Supported Platforms<h3>

 Apple MacOS X

 Apple MacOS 7-9

 Berkeley Systems Design (BSD)

 Compaq Alpha Servers

(formerly DEC Alpha)

 Hewlett Packard

 Linux

 Microsoft Windows

 SGI (Silicon Graphics)

 Sun Microsystems — Cobalt

Servers

 Sun Microsystems — Solaris-based

Servers

</body>

</html>

Then run the page to verify your work. Your page should look something like the one in
Figure 5.6.

The next step is to package this Web page with its image files into a single archive file that
can be deployed on any Web shell system.

Encapsulating and Deploying Web Applications

Often, when you do Web development, you create and verify a Web-based system in a
development environment, either on the same server as the deployment environment but in
a different directory, or on a different server altogether. In any case, you will often have to
move an entire Web application, with source code, HTML documents, code libraries,
images, and other files, as well as the directory structure that contains and organizes these

74 Learning the Web Shell

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 74

files, to the environment that will host the deployed application. In the next section, you
package the platforms page and its image files into one file and deploy this mini-application
in a different directory on your server.

Creating an Installation File with the pack Command

The pack command bundles the files in a Web application, compresses and archives the
files into one installation file, and embeds directory structure information so that the
application can be unpacked to create a clone of the original.

To pack files, invoke the pack command with the name of the archive as its first argument.
The following arguments are considered the file sources from which the pack command
draws to create the archive file.

• To create a pack file, you must specify the TARGET pack file. If the file exists, use
the -c option to overwrite it. The arguments following the TARGET file are the
files and directories to be packed; any directories given will be recursively
packed. Full or relative pathnames are allowed.

• By default the BASE_DIRECTORY is the current working directory unless
otherwise specified by the -b option. All files to be packed must exist somewhere
within the BASE_DIRECTORY.

Chapter 5: Useful Web Shell Commands 75

Figure 5.6 The completed platforms Web page now contains all the image files you inserted.

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 75

• To specify protected files, use the -p option followed by a space-delimited list of
the files to be protected. If the list contains more than one file, the entire list must
be wrapped in quotes. All pathnames to the protected files must be relative to the
given base directory (cwd by default).

To extract (unpack) a pack file, use the -x option followed by the pack filename.
By default, the pack file will be extracted to the current working directory unless
otherwise specified by the -b option. To extract only specified files, use the -p
option followed by a list of files to be extracted. The list of files must be space-
delimited and wrapped in quotes. To view the contents of an existing pack file,
use the -l option.

Table 5.1 gives a list of the available options.

The pack command is one of the more feature-rich commands supported by the Web shell,
but for typical use, it is quite simple.

Packing the Platforms Page and Images

This section shows you how to use the pack command to create an installation file that can
be used to redeploy the platforms page you just created. You pack up the HTML file as well
as all of the images into one file called platforms.pak. The following files are associated
with the platforms page and are going to make up the contents of the pack archive file:
/platforms/>ls *

FILE PRIVATE 803 05/04/03 15:10:24 index.html

76 Learning the Web Shell

Option Function

-c c TARGET Creates a pack file and forces the overwriting of TARGET if it
already exists

-p “FILE...” Protects the specified files (for packing only)

-b BASE_DIRECTORY Set the base directory (cwd by default) for extraction or
packing

-n Sets no compression (for packing only)

-l Lists files embedded in given pack file

-x Extracts the given pack file -f “FILE...” Extracts only the
specified files

Table 5.1 Available Options for the pack Command.

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 76

images:

FILE PUBLIC 1040 05/04/03 23:26:19 apple_logo.gif

FILE PUBLIC 1690 05/04/03 23:26:23 bsd.gif

FILE PUBLIC 1520 05/04/03 23:26:38 cobalt_logo.gif

FILE PUBLIC 1874 05/04/03 23:26:42 digital_logo.gif

FILE PUBLIC 1194 05/04/03 23:26:59 hp_logo.gif

FILE PUBLIC 1844 05/04/03 23:26:50 linux.gif

FILE PUBLIC 1289 05/04/03 23:26:55 mac_logo.gif

FILE PUBLIC 698 05/04/03 23:27:05 sgi_logonu.gif

FILE PUBLIC 481 05/04/03 23:27:09 sun_logo.gif

FILE PUBLIC 1768 05/04/03 23:27:13 windows.gif

You could pack these files by specifying them individually as arguments supplied to the
pack command; but it would be much easier to specify their directory. The following
command packs all of the files in the previous list (take note of the current working
directory, /):
/>pack platforms.pak platforms

target file: /platforms.pak

compression: on

archived files:

platforms/images/linux.gif

platforms/images/bsd.gif

platforms/images/sgi_logonu.gif

platforms/images/windows.gif

platforms/images/sun_logo.gif

platforms/images/hp_logo.gif

platforms/images/cobalt_logo.gif

platforms/images/apple_logo.gif

platforms/images/digital_logo.gif

platforms/images/mac_logo.gif

platforms/index.html

The pack command, when used in this way, requires two arguments. The first argument, in
the preceding example, platforms.pak, is the name of the archive file you are about to
create. The following arguments, in the preceding case one argument, platforms, are the
names of the files and directories that you want to include in your archive file. When you
run the pack command, it lists the individual files it added to the archive file. In the

Chapter 5: Useful Web Shell Commands 77

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 77

preceding example, the files added to the platforms.pak archive file are the files required
to run the platforms page.

In the previous example, when the pack command runs, you move out of the directory that
contains the files to pack and reference the base directory of the Web application from there.
This is the simplest method for packing an application and should serve most of your needs.
In general, move into the directory immediately above the directory that contains the Web
application code (if you consider the root directory to be at the top of the file hierarchy) and
give pack the name of that container directory as its only source file argument. The pack
command adds all files and folders as deep as the file tree goes from that container
directory.

Listing Embedded Pack Files with pack -l

At this point if you were to give platforms.pak to another developer, he or she could
examine the contents of the .pak file by running the pack command with the -l option.
Run the pack command with the -l option to view the contents of the .pak file you just
created, platforms.pak:
/>pack –l platforms.pak

platforms.pak:

platforms/images/linux.gif CPUBLIC 1850

platforms/images/bsd.gif CPUBLIC 1696

platforms/images/sgi_logonu.gif CPUBLIC 704

platforms/images/windows.gif CPUBLIC 1774

platforms/images/sun_logo.gif CPUBLIC 487

platforms/images/hp_logo.gif CPUBLIC 1200

platforms/images/cobalt_logo.gif CPUBLIC 1259

platforms/images/apple_logo.gif CPUBLIC 695

platforms/images/digital_logo.gif CPUBLIC 1880

platforms/images/mac_logo.gif CPUBLIC 1254

platforms/index.html CPRIVATE 668

The resulting list displays the contents of the embedded files. The first column lists the file
name, the second column lists the attribute of the file, and the third column lists the
uncompressed size of the file.

These details tell you a lot about which files are contained in the .pak file, and how the
archive will be installed. The first column, for example tells you that when the installation
is performed, a platforms directory will be created with an images directory underneath.

78 Learning the Web Shell

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 78

Note that the file paths in the first column are relative to the root directory. In general, when
you pack files, they will be assigned a path relative to the base directory at the time of the
creation of the pack file. By default, the base directory is the current working directory at
the time of creation. You can override this by using the –b switch and specifying a base
directory other than the current working directory.

The second column tells you whether the files are public or private. (Refer to Chapter 2,
“File Management.” for more information about private versus public files.) When the
archive is extracted, the files listed will be created on the public or private side based on
the attributes listed when you run pack -l. These are the same attributes the files had when
the archive was created. The C character before the public/private indication, tells you that
the file is compressed in the archive. The pack command compresses files by default. Use
the –n switch to turn compression off.

If, for example, you want the archive to appear like the following version, you specify that
the base directory be the platforms directory in the following manner:
/>pack platforms.pak –b platforms platforms

target file: /platforms.pak

compression: on

archived files:

images/linux.gif

images/bsd.gif

images/sgi_logonu.gif

images/windows.gif

images/sun_logo.gif

images/hp_logo.gif

images/cobalt_logo.gif

images/apple_logo.gif

images/digital_logo.gif

images/mac_logo.gif

index.html

In the preceding example, the argument immediately after the –b switch overrides the
default base directory, the current working directory. It might look funny to see platforms
platforms on the command line, but in this case, the first platforms binds to the –b
switch and the second platforms specifies the source directory. When you check the
contents of the pack file, it is evident the paths are relative to platforms:
/>pack –l platforms.pak

platforms.pak:

Chapter 5: Useful Web Shell Commands 79

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 79

images/linux.gif CPUBLIC 1850

images/bsd.gif CPUBLIC 1696

images/sgi_logonu.gif CPUBLIC 704

images/windows.gif CPUBLIC 1774

images/sun_logo.gif CPUBLIC 487

images/hp_logo.gif CPUBLIC 1200

images/cobalt_logo.gif CPUBLIC 1259

images/apple_logo.gif CPUBLIC 695

images/digital_logo.gif CPUBLIC 1880

images/mac_logo.gif CPUBLIC 1254

index.html CPRIVATE 668

The importance of the paths of the file contents in a pack file arises at installation time.
When you unpack a pack file, it gets unpacked into the paths specified by the pack archive.
In the preceding case, when you unpack the platforms.pak file it will, by default, create
the index.html file in the current working directory, create an images directory relative
to the current working directory, and then unpack the remaining image files into that
directory.

Unpacking a Pack File

To test unpacking platforms.pak, create a new directory called /deployment with the
mkdir command then move into that directory with the cd command:
/>mkdir deployment

/>cd deployment

Run the pack command with the –x argument to tell pack to unpack the file at the given
file path, as in the following example:
/deployment/>pack –x /platforms.pak

/platforms.pak – OK

Keep in mind that the platforms.pak file is not in the current working directory anymore
because you are in the deployment directory. Use a full path to specify the location of the
platforms.pak file.

The output of the unpacking process is a status message like the OK message in the
preceding example. This tells you whether the unpacking process was successful. You can
tell the pack command to give you more information by using the –v switch to indicate
verbose mode. The pack command in verbose mode will display the names of the files it
unpacked.

80 Learning the Web Shell

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 80

Now that the platforms pack file has successfully unpacked, list the contents of the
current working directory to verify the success of the installation:
/deployment/>ls

DIR MIRROR 360 05/06/03 16:46:41 images

FILE PRIVATE 803 05/06/03 16:46:41 index.html

/deployment/>

Now you can run the index.html file with the run command.
/deployment/>run index.html

You should get a Web page exactly like the version you created by hand in the platforms
directory. Now you have an exact copy of the platforms page as well as all of its images.

If you create an entire Web site with thousands of files, the deployment process is just as
simple, provided that the entire application respects the rules of portability. When writing
HTML files, the primary rule for portability is referring to embedded content, such as
images with relative paths when you write HTML. You should avoid, when possible, using
full paths in your HREF, IMG, and other tags that refer to files on your server. This ensures
that a pack file like the one you created in this chapter will be portable across different
directories on the same system or on different domain names.

Writing Web Applications for Portability

In the content of the platforms page, the image tags referred to files with relative paths,
which allowed you to redeploy the page in another directory without any problems. If
index.html contains references to its image files with full paths, the page references
images in the source code area, /platforms. Any alteration to the development file system
results in an alteration of the production file system.

The following code is an example of a less desirable version of index.html. Note that the
image files are referenced absolutely:
<html>

<head>

<title>Web Shell — Supported Platforms</title>

</head>

<body>

<h3>Web Shell — Supported Platforms<h3>

 Apple MacOS X

 Apple MacOS 7-9

Chapter 5: Useful Web Shell Commands 81

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 81

 Berkeley Systems Design

(BSD)

 Compaq Alpha

Servers (formerly DEC Alpha)

 Hewlett Packard

 Linux

 Microsoft Windows

 SGI (Silicon

Graphics)

 Sun Microsystems —

Cobalt Servers

 Sun Microsystems —

Solaris-based Servers

</body>

</html>

If you try to redeploy the preceding file and delete the original images directory, the page
will not work. In general, keep all paths relative in your application to avoid problems when
you deploy the application.

Summary

The functionality outlined in this chapter sets the Web shell apart from other shells, because
the Web shell supports the ability to move files across the Web from server to server and
create and deploy Web-based applications using a powerful file archiving and unarchiving
functionality. You can create, manage, and deploy Web-based applications with relative
ease and without having to resort to third-party tools.

82 Learning the Web Shell

pablo_chapter_5.qxd 11/1/04 12:12 PM Page 82

Creating Custom Commands

The Web shell’s stock functionality is rich enough to allow you to develop, manage, and
deploy Web applications. You will most likely find that your needs are met by the
functionality supplied by the Web shell without much customization. However, it might be
reassuring to know that the Web shell is extendable. In addition to being customizable, it is
designed to allow you to create your own commands to supplement the stock command set.
In this way, it can serve as a platform from which you can call and control custom scripts.

This chapter is more advanced than previous chapters in that it goes under the hood of the
Web shell and looks at how commands fit within the Web shell API. It walks you through
writing and testing an example command in much the same way that the designers of the
Web shell created its stock functionality. By the end of the chapter, you will know
everything you need to know about how to create a new command.

The language of the Web shell is Aestiva HTML/OS. HTML/OS is a simple but powerful
language, and this chapter implements only enough of it to show you how to interface with
the Web shell when you create your own commands. You don’t need to be an expert
programmer to understand what will be presented. The example command that you will
create won’t require the use of any complicated algorithms or functions. But it will
implement the various means by which the Web shell and its commands interact, so you’ll
have all of the Web shell’s command API tools at your disposal.

Because HTML/OS is a high-level, English-like language, you should be able to glean
some of the logic in the code in this chapter, even if you don’t have any coding experience.
If you do have coding experience, you won’t be bored by the details of how to write scripts
and Web applications in HTML/OS in this book. Those details are covered in Advanced
Web Sites Made Easy by D.M. Silverberg.

83

66
Chapter

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 83

Designing a Web Shell Command

This section walks you through creating a new command called calc. The calc command
will do the work of a simple calculator at the command line. More important, it will
showcase the various ways in which you can pass data to a command, via arguments,
switches, bound switches (see the note “Bound Switches” for more information), and piped
input. You will build this command incrementally, from a very basic form into a more
complicated command.

Bound Switches
A bound switch is a switch that requires an argument. An example of a bound switch is the –k
switch in the sort command covered in Chapter 4, “Redirection.”

Creating the calc Command File

All Web shell commands live in the same directory. If you are using the copy of the Web
shell that was supplied to you by the default installation of HTML/OS, that directory is
/apps/shell/bin. If you move into this directory with the cd command and list its
contents, you see files for each of the Web shell commands:
/apps/shell/bin/>ls

FILE PRIVATE 1009 05/12/03 21:53:16 alias.cmd

FILE PRIVATE 1047 05/12/03 21:53:16 cat.cmd

FILE PRIVATE 344 05/12/03 21:53:16 cd.cmd

FILE PRIVATE 582 04/25/03 16:19:53 cdl.cmd

FILE PRIVATE 49 05/12/03 21:53:16 clear.cmd

FILE PRIVATE 659 04/25/03 16:19:53 cleardb.cmd

FILE PRIVATE 1785 05/12/03 21:53:16 cp.cmd

FILE PRIVATE 547 05/12/03 21:53:16 cpdir.cmd

FILE PRIVATE 9 05/12/03 21:53:16 date.cmd

FILE PRIVATE 82 05/12/03 21:53:16 desktop.cmd

FILE PRIVATE 2476 05/12/03 21:53:16 diff.cmd

FILE PRIVATE 498 05/12/03 21:53:16 do.cmd

FILE PRIVATE 1635 05/12/03 21:53:16 edit.cmd

FILE PRIVATE 980 05/12/03 21:53:16 env.cmd

FILE PRIVATE 357 05/12/03 21:53:16 exit.cmd

84 Learning the Web Shell

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 84

FILE PRIVATE 1320 05/12/03 21:53:16 find.cmd

FILE PRIVATE 1279 05/12/03 21:53:16 findtxt.cmd

FILE PRIVATE 327 05/12/03 21:53:16 fixfile.cmd

FILE PRIVATE 331 05/12/03 21:53:16 fixprivate.cmd

FILE PRIVATE 329 05/12/03 21:53:16 fixpublic.cmd

FILE PRIVATE 538 05/12/03 21:53:16 get.cmd

FILE PRIVATE 1224 05/12/03 21:53:16 grep.cmd

FILE PRIVATE 358 05/12/03 21:53:16 help.cmd

FILE PRIVATE 141 05/12/03 21:53:16 history.cmd

FILE PRIVATE 5755 04/25/03 16:19:53 ld.cmd

FILE PRIVATE 118 05/12/03 21:53:16 logout.cmd

FILE PRIVATE 5355 05/12/03 21:53:16 ls.cmd

FILE PRIVATE 3748 04/25/03 16:19:53 ls.lib

FILE PRIVATE 261 05/12/03 21:53:16 mkdir.cmd

FILE PRIVATE 1134 05/12/03 21:53:16 mv.cmd

FILE PRIVATE 1037 05/12/03 21:53:16 mvdir.cmd

FILE PRIVATE 3042 05/12/03 21:53:16 pack.cmd

FILE PRIVATE 271 05/12/03 21:53:16 password.cmd

FILE PRIVATE 460 05/12/03 21:53:16 put.cmd

FILE PRIVATE 9 05/12/03 21:53:16 pwd.cmd

FILE PRIVATE 224 05/12/03 21:53:16 rm.cmd

FILE PRIVATE 922 05/12/03 21:53:16 rmdir.cmd

FILE PRIVATE 1474 05/12/03 21:53:16 run.cmd

FILE PRIVATE 679 05/12/03 21:53:16 set.cmd

FILE PRIVATE 531 05/12/03 21:53:16 sort.cmd

FILE PRIVATE 127 05/12/03 22:08:05 t.cmd

FILE PRIVATE 101 05/12/03 21:53:16 version.cmd

FILE PRIVATE 1652 05/12/03 21:53:16 view.cmd

FILE PRIVATE 660 05/12/03 21:53:16 wc.cmd

The preceding list shows all the commands in the Web shell. All Web shell commands must
live in this directory and must have a .cmd extension. Because, as you might have guessed,
the name of the cmd file corresponds to the name of the command, the command file for
the calc command must be called calc.cmd.

Chapter 6: Creating Custom Commands 85

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 85

Testing the Command API

If you are in the /apps/shell/bin directory already (if you aren’t move into it now with
the cd command), open an editor window for calc.cmd with the edit command:
/apps/shell/bin/>edit calc.cmd

Now that you have an edit window open, you can add text to the document. Add the
following line to the editor and save the document when you are finished:
io = “Currently, the calc command is under development.” + lf

As soon as you save the file, the calc command will be live. You can then run it at the
command line to test your work:
/apps/shell/bin/>calc

Currently, the calc command is under development.

/apps/shell/bin/>

As you can see, the calc command in its current state displays the preceding status
message when you run it. This is true even though you didn’t say explicitly in the contents
of calc.cmd that anything should be displayed. Instead you set the value of the io variable
to the previous message. The Web shell always displays the io variable when it runs a
command. If you want to display anything, you have to put the text that you want to display
in the io variable. (For more information on variable in HTML/OS, read the note
“Variables in HTML/OS.”)

Variables in HTML/OS
A variable is a container of sorts, consisting of a name and contents. Variables in HTML/OS can
be called anything, as long as the name doesn’t conflict with a word that has special meaning in
HTML/OS code, and as long as the variable name doesn’t have any nonalphanumeric
characters. The contents of a variable can consist of anything as well, but HTML/OS treats
variables differently according to whether their contents contain numbers or text.

The calc.cmd line of code assigns the sentence on the right side of the equals sign to the
variable called io. The sentence is wrapped in quotes to tell HTML/OS that you aren’t
referring to variables, but text. The quotes also delimit the beginning and ending of the
sentence. The sentence contains a plus (+) symbol, which tells HTML/OS to concatenate
the value on the left of it (the sentence) with the symbol to the right the lf keyword. (For
more information on concatenation versus arithmetic, read the note “The = and + Symbols
in HTML/OS.”) The lf keyword signifies a line feed. If you omit the line feed keyword at
the end of this sentence, the Web shell won’t display the command prompt on the next line
after calc’s output.

86 Learning the Web Shell

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 86

The = and + Symbols in HTML/OS
The = symbol can signify two things in HTML/OS: assignment and comparison. Assignment
tells HTML/OS to put a value into a variable. Comparison determines whether the values in
two variables are the same. When you use the = symbol, HTML/OS knows which of these
meanings to apply by looking at the context of the statement.
The + symbol can signify two things in HTML/OS. One is an arithmetic addition, and the other
is text concatenation. HTML/OS either adds numbers arithmetically, or concatenates text,
depending on the values of the variables on either side of the symbol. If both values look like
numbers, it adds the two values arithmetically. If either value looks like text, it concatenates
the two text values. In version 3 or above of HTML/OS the & character may be used to
unambigiously concatenate two strings.

The variable you set in your one-line version of the calc command is the io variable. The
io variable stands for input/output. It contains any data that was piped into the command
from another command, and it holds output data to be piped into another command,
redirected to the file system, or displayed to the screen. After a command is called, the Web
shell determines what to do with the resulting io data based on whether you told it to
redirect to the file system, pipe to another command, or display to the screen. (Refer to
Chapter 4, “Redirection,” for more information on piping and redirection.)

The io variable is the most important variable in the Web shell’s command API. It is the
means by which commands talk to each other and to the Web shell.

Creating Basic Functionality for the calc Command

The calc command will serve as a rudimentary arithmetic calculator and have the ability
to add and multiply. The initial amount of functionality you will code is the ability to add
two numerical arguments. Later, you add code so that you can multiply the result using
shell switches.

You already know how to return information to be displayed to the screen using the io
variable. What remains for this command is reading the two numerical arguments and
adding them. The Web shell provides a simple way of accessing the argument values passed
to a command by setting the values of an array called arg_array. The array arg_array
is a one-dimensional array (a column), which contains the arguments you pass to the calc
command. (For more information on arrays, refer to the note, “Arrays in HTML/OS.”)

Arrays in HTML/OS
An array is a type of variable that contains multiple distinct values. These values are
organized into a grid or table. To access an individual cell in an array, use the array name

Chapter 6: Creating Custom Commands 87

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 87

and the indexes corresponding to the column and row position of the cell. The general form of
accessing an array cell is arrayname[column, row]. If a two-by-two array called
compass contains the values northwest, northeast, southwest, and southeast, as in
Figure 6.1, you would access the value northwest by referring to compass[1,1],
northeast by compass[2,1], southwest by compass[1,2], and southeast by
compass[2,2]. If you omit the row index, it will be assumed to be 1. The value of
compass[2], therefore, is northeast. If you omit all indexes, the row and column values
are assumed to be 1 and 1. The value of compass (no indexes specified), therefore, is
northwest.

Now open an editor window on the calc.cmd command file and replace its contents with
the following line:
io = “argument1: ” + arg_array[1,1] + lf + “argument2: ” +

arg_array[2,1] + lf

This line returns the values of the arguments you passed to the calc commands to the Web
shell. It serves to demonstrate that you can retrieve the arguments passed to the calc
command. After you save the command code and run calc at the command line, you should
see something like the following results:
/apps/shell/bin/>calc aaa bbb

argument1: aaa

argument2: bbb

/apps/shell/bin/>

Because there are lf keywords (line feeds) concatenated with the plus (+) operator between
the two arguments, the two argument statements are separated with a line break in the
output area as well.

Now that you can access the command arguments, you can add their values and output the
sum. Replace the contents of calc.cmd with the following line:
io = (arg_array[1,1] + arg_array[1,2]) + lf

88 Learning the Web Shell

Figure 6.1 The compass array consists of a two-by-two matrix of data values.

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 88

When you run this command with numerical arguments, it displays the sum to the output
area as in the following example:
/apps/shell/bin/>calc 4 6

10

/apps/shell/bin/>

If you give it decimal arguments, it works just as well:
/apps/shell/bin/>calc 1.3 0.1

1.4

/apps/shell/bin/>

On the other hand, if one or both arguments are non-numerical, it concatenates the two
values.
/apps/shell/bin/>calc Apollo 11

Apollo11

/apps/shell/bin/>

This is what you would expect since the addition operator adds arithmetically when its
arguments are both numbers, and concatenates otherwise.

Using a Switch to Add a User Control

Now that you have a command that reads from the argument list, you will add a control to
the calc command by adding support for a switch. The switch that you implement tells the
calc command to print in verbose mode when a –v switch is present. When a user passes
the switch –v to the calc command, the calc command displays a message about what it’s
doing instead of simply displaying the result of its calculation.

A few steps are involved in reading a switch from within a command. The first step is to
run a function called getflags in the following manner.
void = getflags(“v”)

The getflags function tells the Web shell to look for the flags that you specify in the text
submitted by the Web shell user. (For more information on functions, refer to the note
“HTML/OS Functions.”) When you run the getflags function, the environment is
prepared so that you can retrieve the flags that the user supplied along with the command.

Chapter 6: Creating Custom Commands 89

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 89

Clear the contents of the calc.cmd file, and replace them with this getflags statement. It
tells the command to look in its argument list for a flag. The getflags command doesn’t
retrieve flag values; but it prepares the environment so that you can retrieve flag values
later. In general, the getflags function accepts multiple switch indications. Call getflags
in the following manner:
void = getflags(“a,b,c,d,e”)

The getflags function looks for switches a, b, c, d, and e from the command line.

HTML/OS Functions
HTML/OS functions encapsulate blocks of code that can be called with the name of the
encapsulating function. You can pass data to the function from within the parentheses
required when you call the function. Data is then optionally returned to the caller and
assigned to a variable or used for some other purpose. Just as it is necessary to use
parentheses when calling functions that require no arguments, it is also required that a
variable be ready to receive any returned data, even if no data is returned. If an HTML/OS
function returns no data, place a dummy variable on the left side of the equation as in void
= getflags(…). In this case void is not a keyword, but the name of a dummy variable.

After the getflags statement, you can assign the value that corresponds to the presence or
absence of the –v flag to a variable. In this example, call that variable isverbose to
approximate its meaning in English. To set the value of isverbose after the getflags call,
add the following line of code to the calc.cmd file:
isverbose = getswitch(“v”)

This line sets the variable isverbose to a one or a zero depending on whether this switch
is present. A one indicates that the switch is present, and a zero indicates that it is not
present. For more information on the meaning of zero in HTML/OS refer to the note “Truth
in HTML/OS.”

Truth in HTML/OS
When you invoke an if statement in HTML/OS code, HTML/OS checks to see whether the
value of its argument is true or false. The only values that are considered to be false are
the number zero and the word false. All other values evaluate to true.

The next task that has to be accomplished is testing the value of isverbose and acting
accordingly. To test a value in HTML/OS, as in many other languages, use an if statement,
as in the following test for isverbose:
if (isverbose) then

90 Learning the Web Shell

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 90

io = “The sum of ” + arg_array[1,1] + “ and “ + arg_array[1,2] +

“ is ”

/if

Add the preceding statement to the calc.cmd after the isverbose assignment. Then add
the following statement to append to io the value of the sum:
io = io + (arg_array[1,1] + arg_array[1,2]) + lf

Notice that io is being assigned to the value of itself plus the value of the sum. You
wouldn’t want to lose the verbose content by overwriting it.

The entirety of the calc command as developed thus far should look like the following:
void = getflags(“v”)

isverbose = getswitch(“v”)

if (isverbose) then

io = “The sum of “ + arg_array[1,1] + “ and “ + arg_array[1,2] +

“ is “

/if

io = io + (arg_array[1,1] + arg_array[1,2]) + lf

After you save this file, run the command to see its effect. If you run it with the –v switch,
it displays the explanatory sentence; otherwise, it displays only the value of the sum of the
two arguments.

Here is the command as run without the –v switch:
/apps/shell/bin/>calc 111 222

333

/apps/shell/bin>

With the –v switch, it prints the descriptive sentence:

/apps/shell/bin/>calc –v 111 222

The sum of 111 and 222 is 333

/apps/shell/bin/>

In general, switches are placed at the beginning of the list of command arguments for the
sake of clarity. In the Web shell, however, you can place these switches wherever you like.
All of the following calls to the calc command in verbose mode are equivalent:

Chapter 6: Creating Custom Commands 91

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 91

/apps/shell/bin/>calc –v 111 222

The sum of 111 and 222 is 333

/apps/shell/bin/>calc 111 –v 222

The sum of 111 and 222 is 333

/apps/shell/bin/>calc 111 222 –v

The sum of 111 and 222 is 333

/apps/shell/bin/>calc 111 222–v

The sum of 111 and 222 is 333

/apps/shell/bin/>calc “–v” “111” “222”

The sum of 111 and 222 is 333

The functionality that makes the preceding commands identical from the perspective of a
command is taken care of by the Web shell layer. When you write a new command, you
don’t have to concern yourself with the details of parsing the command line and accounting
for the various possibilities of human input variations and errors, because those matters are
handled by the Web shell. The switch and argument data retrieval tools are robust enough
for you to be able to code without having to perform error checking at the command level.

Adding a User Control with a Bound Switch

The second type of switch is one that is bound to a piece of data followed immediately after
the switch. This kind of switch itself requires an argument.

You add multiplicative functionality to the calc command through the use of a bound
switch. When the calc command is called with an –m switch and a switch argument, the
sum of the arguments will be multiplied by the switch argument. For example, the following
command produces a result of 6, the sum of 4 and 2.
/apps/shell/bin/>calc 4 2

6

/apps/shell/bin/>

Adding the –m switch with a multiplier, would produce the following output:
/apps/shell/bin/>calc 4 2 –m 2

12

The –m switch specifies that its argument multiplies the sum of calc’s arguments.

To add the –m bound switch to the calc command, modify the calc.cmd text file to look
like the following:

92 Learning the Web Shell

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 92

void = getflags(”v,m=true”)

isverbose = getswitch(”v”)

multiplier = getswitch(”m”)

sum = arg_array[1,1] + arg_array[1,2]

if (multiplier != ‘’) then

sum = sum * multiplier

/if

if (isverbose) then

io = ”The sum of ” + arg_array[1,1] + ” and ” + arg_array[1,2]

if (multiplier != ‘’) then

io = io + ” multiplied by ” + multiplier

/if

io = io + ” is ”

/if

io = io + sum + lf

The first line calls the getflags, telling it to look for the switches -v and -m in the
command line and telling it that the -m switch will be a bound switch. When a switch is
bound (meaning, when it has an argument) the convention is to put an =true next to the
switch in the getflags argument string. This tells getflags to look for an argument next
to the switch and remove that argument from the general argument list, arg_array. It is
also important to avoid putting spaces between the flag arguments in the argument string.
Spaces cause the getflags function to fail.

The next line calls the getswitch function with an argument of -v, telling it to return a
zero or one, depending on whether the switch is present among the command arguments.

The following line calls getswitch again, this time looking for the existence of the switch -m
and its argument. When a switch requires an argument, the getswitch command behaves
differently from when the switch does not. In particular, getswitch will return nothing (the
empty string, “”) when the switch is not present or when the switch has no argument. When the
switch and an argument are both present, getswitch returns the value of the switch argument.

After the multiplier is set by the call to getswitch, the sum of the two arguments is taken
and applied to a variable called sum. It is often more convenient to use a container variable
like sum, instead of making the calculation inline, because it allows you to manipulate the
sum value if you need to without adding additional logical statements in the display routine.
In this example, you want to multiply the value of sum if a multiplier has been specified.

Chapter 6: Creating Custom Commands 93

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 93

On the following line, the code checks to see whether the multiplier variable is not equal to
the empty string (the !=, or not equal to symbol is the logical negation of the =, or equal to
symbol, because the exclamation mark, or negation operator, generally signifies logical
negation). If the multiplier variable is not equal to the empty string, the switch and an
argument are present. This switch argument, having been returned by getswitch, is now
contained in the multiplier variable. In this case, the sum is multiplied by the multiplier value.

The following line executes the multiplication. The asterisk (*) signifies multiplication.
Therefore, the following statement is one of assignment in which the value of the contents
of the sum variable is multiplied by the value of the multiplier variable and the result is
assigned to the contents of the sum variable:
sum = sum * multiplier

At this point in the code, the value of sum contains the resulting value, regardless of whether
the multiplier switch was provided.

The next line prints the verbose message if the verbose flag was set. Now that there is a
multiplier, the code that constructs the verbose message has to account for the possibility of
a multiplier. If one exists, the output message is appended to indicate that the result was
multiplied. These lines append text to the io message accordingly.

The final line of code appends to the io variable the value of the calculation. This line
causes the correct result to be printed, regardless of whether the verbose flag was set. If it
is set, the result is concatenated onto the message. Otherwise, the result is concatenated to
the value of io. Because io is often empty when there is no piped input to a command, this
doesn’t present a problem when the calc command is run by itself.

Because you will eventually want to add support for piping, and because you shouldn’t
count on users not piping commands anyway, this deficiency will have to be addressed
before the calc command is completed. (For more information on how piping is used by
Web shell users, refer to the Chapter 4, “Redirection.”)

Supporting Piped I/O

To demonstrate how to use piping, you add support for piping to the calc command so that
you can evaluate more complicated statements like the following:

(2+2)*3 + (4+4)*5

94 Learning the Web Shell

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 94

To do so, you use the following command:
/>calc 2 2 –m 3 | calc 4 4 –m 5

Managing data via the io variable is the only matter you have to consider when supporting
piping in your commands. The value of the io variable at the beginning of a command is
the value of the data that was piped to the command. On the other hand, if the command is
called without any piped input, the io variable starts with the value of the empty string.

To be able to support arithmetic statements similar to the preceding one, you have to save
the value of the io variable before you write to it and add that initial value to the output of
calc command.

Alter your code to look like the following code block to allow for the support of piping in
the manner prescribed:
void = getflags(“v,m=true”)

isverbose = getswitch(“v”)

multiplier = getswitch(“m”)

sum = arg_array[1,1] + arg_array[1,2]

if (multiplier != ‘’) then

sum = sum * multiplier

/if

input = io

if (input != ‘’) then

sum = sum + input

/if

if (isverbose) then

io = “The sum of “ + arg_array[1,1] + “ and “ + arg_array[1,2]

if (multiplier != ‘’) then

io = io + “ multiplied by “ + multiplier

/if

if (input != ‘’) then

io = io + “ and added to “ + input

/if

io = io + “ is “ + sum + lf

else

io = sum

/if

Chapter 6: Creating Custom Commands 95

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 95

The calc command code is altered to save the value of io and assign it to another variable
called input. After the sum is calculated, the value of input is added to it. The addition of
the input value also required that the verbose text be altered to indicate the input value
added. Importantly, whereas previous iterations of the calc command were appending a
line feed to all output, verbose or not, any version that supports piping should not.

Presumably, it is obvious that the verbose version of the calc command could not be piped
into another calc command, because the second calc command would try to add the
verbose statement to its calculation instead of the value arrived at by the previous
command. Because the io variable is the only channel of communication between
commands, you have to pass the exact value you want read, without extraneous text, spaces,
or line feeds to the target command.

After saving this final version of the calc command, run it in the following way:
/>calc 2 2 –m 3 | calc 4 4 –m 5 –v

The sum of 4 and 4 multiplied by 5 and added to 12 is 52

The preceding command is equivalent to ((2 + 2) * 3) + ((4 + 4) * 5).
Notice that the –v flag isn’t set until the final instance of the calc command. If it had been
set in the first instance of the calc command, the second calc command would have added
its calculation to the sentence, ”The sum …”, and not to the numerical value its command
produced. This is an example of a command that has two modes of communication: one for
other commands and one for humans. Make sure that you program your Web shell
commands with these considerations in mind. A command might generate output that is
functional for an end user, but isn’t easily interpreted by computer code. It is often better to
implement two different modes of output for this reason.

Summary

The Web shell can be a powerful tool for running Web-based scripts. After you learn the
HTML/OS language, you can create custom commands that can interface with other
commands and manage your Webbased system according to your particular needs. The Web
shell, in addition to being a file-management tool and Web-development and deployment
tool, can serve as a tool for custom system administration through the use of its extensible
command set.

96 Learning the Web Shell

pablo_chapter_6.qxd 11/1/04 12:22 PM Page 96

HTML/OS Resources

The Web and elsewhere offers multiple resources where you can join communities of Web
shell and HTML/OS users, read about UNIX shells, and learn how to create Web
applications with Aestiva HTML/OS. This appendix provides many of these resources that
may be of interest to you.

The Web Shell Web Site

Access your account and other resources related to the Web shell provided by Aestiva at the
following address:

http://h2o.aestiva.com

Books on UNIX Shells

There are many good books on UNIX shells. The following two books are among the most
popular. The first introduces you to basic shell-related concepts and the second is a
thorough resource for a large number of UNIX commands.

Learning the UNIX Operating System, by Jerry Peek, John Strang, and Grace Todino-
Gonguet, O’Reilly, October 2001.

UNIX in a Nutshell: System V Edition, by Arnold Robbins, O’Reilly, September 1999.

A Book on HTML/OS

The following is a good book on HTML/OS

Advanced Web Sites Made Easy, by D.M. Silverberg, Top Floor, 2001.

The Aestiva Web Site

The Aestiva Web site is a good place to find information on the latest Web-based products
offered by Aestiva. It contains code samples and other resources you can use to learn

97

Appendix
aa

pablo_appendix_a.qxd 11/1/04 11:21 AM Page 97

HTML/OS and packaged applications you can install on your copy of Aestiva Web shell.
Visit www.aestiva.com.

The H2O Web Site

The Aestiva H2O Web site is a good place to find information on Aestiva H2O, a freely
available version of HTML/OS. Visit h2o.aestiva.com.

A Book on HTML

The following is a must-read for Web developers. It teaches you how to use HTML as it
was intended to be used.

HTML & XHTML: The Definitive Guide, 5th Edition, by Bill Kennedy and
Chuck Musciano, O’Reilly, August 2002.

98 Learning the Web Shell

pablo_appendix_a.qxd 11/1/04 11:21 AM Page 98

Shell Man Pages

This appendix provides a reference to the manual pages provided by the Web shell for each
of its commands. To access these manual pages, use the man command with the name of
the command as an argument. For example, to retrieve a manual page for the sort
command, issue the following command: />man sort.

The previous example command will display the manual page for the sort command––the
same manual page contained in this appendix. This appendix begins, under the heading
“Basic Supported Shell Features,” with the manual page for the Web shell itself, and a
synopsis of the most important features supported by the Web shell. Then all of the Web
shell commands are listed along with the manual or man page for each command.

Basic Supported Shell Features

The Web shell supports the standard features common to most shell environments. To
perform tasks, you issue commands at the command line and control those commands via
arguments and switches. The Web shell features, including data piping and redirection,
wildcard expansion, command aliasing, and command history access, make running
commands easy. This section of this appendix provides an outline of these fundamental
features.

Command Syntax

Commands often require or allow arguments. Arguments are symbols that appear after a
command: command arg1 arg2 arg3.

Commands also often allow switches, which are letters after a hyphen (-), and give the user
control over a particular feature in a command. For example, ls -t sorts the output of ls
by the time stamp on the file.

Some switches require an argument immediately following the switch. For example, sort
-nk 5 myfile.txt sorts myfile.txt numerically on column 5. If the order were
reversed this way, sort -kn 5 myfile.txt, the command would fail because the switch

99

Appendix
bb

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 99

k requires an argument immediately following it. Alternatively, each switch can be
specified individually: sort -n -k 5 myfile.txt.

Executing Multiple Commands

To execute multiple commands in succession without waiting for the command prompt,
separate the commands with semicolons: cp index.htm index.html; rm “*.htm”;
ls.

Piping

Piping allows multiple commands to operate in conjunction with each other by causing the
output of one command to be the input of another without printing the intermediate output
to the screen. By default the output of any given command will be printed to the screen.
This output can instead be piped, using the pipe (|) symbol on the command line, into
another command as its input, given that the second command accepts piped input. A
typical use of piping might be to use grep to print only matching lines to the screen and
suppressing all other lines. For example, ls | grep dir outputs only the directories listed
in the current directory. First, ls outputs a file list that is piped into the grep command;
then, grep outputs only the lines of its input — the file list — that contain a match with the
given argument, dir. In effect, only the directories are printed to the screen, and all other
lines output by ls are suppressed. Additionally, another command can be added to this
command set. For example, ls | grep dir | sort -nk 3 sorts the output of grep
numerically on column 3.

Redirection

Redirection is similar to piping in that it channels the output of a command. Redirection,
however, channels that output into a file and it uses the > symbol. For example, ls >
files.txt redirects the output of ls from the screen and writes it to a file named
files.txt. Any output can be redirected this way, and the file does not have to exist
already; but if the file does exist, it will be overwritten without prompting. The burden is
on the user to make sure that data isn’t overwritten.

Similarly, output can be redirected and appended to an existing file using the >> symbol.
For example, cat myfile >> file.txt appends the contents of myfile to the existing
file file.txt.

100 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 100

Wildcards

The Web shell environment will expand any command argument containing the asterisk
symbol (*) into a list of the appropriate matching files. For example, a* will be expanded
into a list of files in the current directory with names that begin with the letter a. Using *a
expands a list of files in the current directory with names ending with the letter a. q*txt
matches all files with names that begin with q and end with txt and contain any number
of characters in between.

You can use *conf* to match all files containing the word conf anywhere in their
filenames.

This concept can be used to find files in multiple directories. For example, */*.html
matches all files in any directory of the current directory that end with .html.
/*/*b*/a*.txt matches all files in any directory two levels deep containing the letter b
with filenames that begin with the letter a and end with .txt.

An example of the use of wildcards might be viewing all .gif files in a particular
directory: view *.gif. You might also need to remove a set of files: rm *_old*.

To disable wildcard expansion, wrap the argument in double quotes: cp ”my*file”
newname.

Aliasing

Commonly used commands can be tedious to write if they are somewhat long, so they can
be “aliased” with a convenient name that will invoke the associated long command. For
example, you can alias home in this way:
alias home “cd /dir1/dir2/dir3/dir4”

Then, typing home on the command line changes the directory accordingly. To unset or
delete this alias type alias home.

Sometimes it is convenient to alias a command with an already-existing command name,
such as alias ls “ls -d”. In this case, typing ls always invokes the ls -d command. To
turn this off, wrap the command in double quotes: “ls”. This way ls invokes the raw,
unaliased command, ls and not ls -d. Type help alias for more detailed information.

Appendix: B 101

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 101

History

Use the exclamation mark at the command line to invoke previously executed commands,
as shown in the following examples:

• !12 invokes the twelfth command executed since the beginning of the user
session.

• !-3 invokes the command executed three commands ago.

• !e invokes the most recent command starting with e, such as edit myfile.

Type help history for more detailed information.

Command History Scrolling

At the command prompt use the arrow keys to scroll through the recent command history
and automatically write them to the command-line input box. The up arrow scrolls back in
the command history, and the down arrow scrolls forward in the command history. This
feature works in Internet Explorer, but is not supported by other browsers at the time of
writing.

Shell Commands

The following is a list of the Aestiva Shell commands. Type help shell for details
concerning the Aestiva Shell. Type help and the command details relating to a command.

• alias associates a command with an alias.

• cat concatenates and displays files.

• cd changes the working directory.

• cdl changes the working directory and then lists files.

• clear clears the screen.

• cleardb clears a database.

• cp copies files.

• cpdir copies a directory.

• date outputs the date and time.

• desktop launches the HTML/OS desktop.

• diff displays differences between two text files.

102 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 102

• do runs HTML/OS code from the command line.

• edit creates or edits a document.

• exit exits the shell.

• find finds a file.

• findtxt finds files with a given text occurrence.

• fixfile moves a file to its appropriate file area.

• fixprivate moves a file to the private area.

• fixpublic moves a file to the public area.

• get downloads files from the server.

• grep finds lines with a string match.

• help accesses the command documentation.

• history outputs the command history.

• ls outputs a file list.

• mkdir creates a new directory.

• mv moves files.

• mvdir moves a directory.

• pack creates, extracts, or displays an Aestiva pack file.

• password redefines the Aestiva system password.

• put transfers files to the server.

• pwd prints the working directory.

• rm removes files.

• rmdir removes a directory.

• run runs an HTML document.

• set changes/displays shell settings.

• sort sorts text.

• version outputs the shell version information.

• view displays an image file.

• wc counts the words and lines in a documentNAME.

Appendix: B 103

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 103

alias
Name alias aliases a shell command.

Syntax alias [NAME [STRING]]

Description Create a convenient name for a command. The new name then
invokes the associated command at the shell prompt. Nesting aliases
is okay. If two arguments are given, the first argument is the alias,
and the second argument is the associated command. If the command
contains a space, it must be encased in double quotes. If one
argument is given, then if such an alias exists, it is deleted. If no
arguments are given, a list of the current aliases is displayed.

Examples alias home “cd /mydir1/mydir2/mydir3”

alias my_unwanted_alias
alias

cat
Name cat concatenate files.

Syntax cat [-d] [FILE...]

Options -d separates files with a text divider.

-l outputs line numbers.

-c makes output clickable.

Description Concatenate files to standard output. Input can be piped in and/or be
read from file arguments. Use option -d to print dividers between
files.

Examples ls | cat zzz.txt

cat -l a*
cat myfile1 myfile2 myfile3 > all.txt

clear
Name clear clears the screen.

Description Removes all content from the screen and puts the command prompt
at the top of the frame.

Example Clear

104 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 104

cleardb
Name cleardb erases all records in an Aestiva database file.

Synopsis cleardb [-n] FILE...

Options -n creates no database (.db) backups.

Description Clears all records in a database. By default, the existing .db file
is moved to .db.bak. A new, recordless .db file is created in its
place. The FILE argument may contain the .db extension, or no
extension. Requires the existence of a .conf file.

Examples cleardb mydb

cleardb mydb.db
cleardb mydb.db -n doesn’t backup existing database (.db) files.

cd
Name cd changes the directory.

Syntax cd DIRECTORY

Description Changes the current working directory to the specified relative or
absolute path.

Examples cd mydir

cd /apps/myfolder

cdl
Name cdl changes the directory and then outputs a file list of the new

directory.

Syntax cdl DIRECTORY

Description Changes the current working directory to the specified relative or
absolute path. Lists the files in the new directory. Typically invoked
via a cd alias.

Examples cdl mydir

cdl /apps/myfolder

cp
Name cp copies files.

Appendix: B 105

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 105

Syntax cp SOURCE DESTINATION

cp FILES... FOLDER.

Description Copies a file to a destination or several files to a directory.

Examples cp myfile new_filename

cp *.txt myfolder
cp file1 file2 file3 myfolder

cpdir
Name cpdir copies a directory.

Syntax cpdir SOURCE DESTINATION

Description Copies a directory to a target directory. If the DESTINATION
directory exists, the SOURCE directory will be placed inside
DESTINATION.

Examples cpdir source_dir target_dir

cpdir /aaa /aaa/bbb

date
Name date outputs the date and time.

Description Outputs the current date and time as set on the server.

Example date

desktop
Name desktop exits to the desktop.

Description Exits the Web shell and opens the Aestiva HTML/OS desktop.

Example desktop

diff
Name diff outputs the differences between two text files.

Syntax diff FILE1 FILE2

Description diff finds the differences between two text files and outputs the
unique blocks of text in FILE1 followed by the unique blocks of
text in FILE2.

106 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 106

Example diff /mydir/lib.txt /backup/mydir/lib.txt

do
Name do runs HTML/OS code from the command line.

Syntax Do [HTMLOS_CODE]

Description Runs HTML/OS code from the command line. Results are
displayed in a pop-up window. Wrap code containing spaces in
double quotes.

Examples do now

do fibonacci(12)
do “for name=x value=1 to 100 do display x*x+’
’
/display /for”

edit
Name edit creates or edits a text file.

Syntax edit [[-b] or [-f]] FILE...

Description Launches an editor window for each file argument given. If the
file exists, it is editable in its window. If the file does not exist, a
blank unsaved document window is opened with the appropriate
filename. To prevent the opening of a new window for
nonexistent filenames, use the -f option. To start one or more
new files with a predefined boilerplate use the -b option. edit
accepts piped input in the format of a column of paths. Each path
spawns its own editor window.

Options -f edits existing file.

-b opens new, nonexistent file with HTML boilerplate as defined
in conf/boilerplate.txt.

Examples edit myfile

edit *.html
edit -f existingfile opens edit window only if file exists
edit -b newfile adds boilerplate to nonexisting file
edit -b a.html b.html c.html opens list of new files adding

boilerplate to each
findtxt “my string” | edit

Appendix: B 107

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 107

exit
Name exit exits to prior desktop or log out.

Description Exit the shell environment. If there is no prior desktop, this
command kills the current session and returns to the login page;
otherwise it returns to the desktop.

Example exit

find
Name find finds files in a directory tree.

Syntax find [BASEDIR] [-d DEPTH] STRING

Options -d sets the number of directories deep.

-c outputs lines that link to an editor.

Description Searches for an exact filename match in a directory tree. Wrap
argument in double quotes to use wildcard matching. Specify a
DEPTH to limit the relative depth of the file traversal.

Examples find -d 1 myfile returns the paths of files whose names are
myfile. Searches only in the current working directory.

find /x “*.txt” traverses the directory tree starting at /x and
returns the paths of all files whose names end with .txt.

find / “a*z” traverses the entire directory tree starting at the
root directory returning the paths of all files whose names begin
with a and end with z.

findtxt
Name findtxt finds text in a directory tree.

Syntax findtxt [BASEDIR] [-d DEPTH] STRING

Options -d set the number of directories deep.

-c outputs lines that link to an editor.

Description Searches for a string in the contents of files contained in a
particular directory and its subdirectories. By default if BASEDIR
is omitted, it is set to the current working directory. Specify a
DEPTH to limit the relative depth of the file traversal. Returned is a

108 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 108

list of the files that contain a string match. The string match will
not necessarily be word based. Search strings containing spaces
must be wrapped in double quotes.

Examples findtxt abc traverses the directory tree starting at the current
working directory. Returns the names of files containing the text
abc.

findtxt “Edward V” returns the names of files containing the
text Edward V.

findtxt / “ zz” traverses the entire directory tree, returning
the names of files containing a word beginning with zz.

findtxt -d 1 myfnc looks only in the current working
directory returning the names of files containing the word
myfunc.

fixfile
Name fixfile system fix file.

Syntax fixfile FILE...

Description Places a file in the correct area (public or private) according to
the file extension and HTML/OS settings. If the file is already
correct, it does nothing.

Example fixfile *.html

fixprivate
Name fixprivate moves a file to the private HTML area.

Syntax fixprivate FILE...

Description Moves a file to the private area.

Examples fixprivate a.txt

fixprivate *.html

fixpublic
Name fixpublic moves a file to the public HTML area.

Syntax fixpublic FILE...

Description Moves a file to the public area.

Appendix: B 109

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 109

Examples fixpublic a.txt

fixpublic *.html

get
Name get downloads files from the server.

Syntax get FILENAME...

Description Downloads one or more specified files. A pop-up window opens
with a list of links which, when clicked, initiate a download of the
file.

Examples get myfile.txt

get *.gif

grep
Name grep outputs lines matching a pattern.

Syntax grep [options] PATTERN

grep [options] PATTERN FILE...

Description grep searches the named input files (or standard input if no files
are named) for lines containing a match to the given pattern. By
default grep prints the matching lines. grep accepts piped input.

Options -v outputs only nonmatching lines.

-c outputs only the number of matching lines.

-n outputs line numbers and suppresses all other output.

Examples grep -n mystring some_file

grep “this string has spaces” *.txt
ls | grep private

history
Name history displays shell command history with associated line

numbers and invokes a previous shell command.

Description The history command displays shell command history of a user
session. The associated line numbers allow the convenient calling
of a previous command using the exclamation operator (!). Such
commands can be invoked absolutely or relatively.

110 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 110

Examples history !101 invokes command number 101 in the shell
history.

!-12 invokes the command twelve commands ago in the shell.

history !gr invokes the most recent command beginning with
gr.

ls
Name ls lists directory contents.

Syntax ls [FILE...] [DIR...]

Description If no arguments are given the files in the current directory are
listed. Otherwise the file contents are listed of any directory given
as an argument, and the file details are listed of any file given as
an argument. Output is by default sorted alphabetically and in the
following format:

TYPE PUBLIC/PRIVATE/MIRROR SIZE(BYTES) TIMESTAMP

Column 2 indicates the area in which the file is located. Refer
to HTML/OS documentation for details about file areas. If the -x
switch is used, the format is the following:

TYPE PUBLIC/PRIVATE/MIRROR SCRAMBLED SIZE(BYTES)
TIMESTAMP NAME

Options -t sorts by date.

-d sorts by type (dir/file).

-s sorts by size.

-x indicates whether scrambled in column 3 of output
(S=scrambled, N=normal).

Examples ls *.html myfiles.*

ls /*/*.xyz No trailing A / returns files and folder contents.
The leading / specifies full path.

ls */*aaa*/ The trailing. A / returns only folder contents. No
leading / specifies relative path.

ls -t

Appendix: B 111

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 111

mkdir
Name mkdir creates a new directory.

Syntax mkdir [DIRNAME...]

Description Creates an empty directory.

Example mkdir dir1 dir2 dir3/dir3

mv
Name mv moves files.

Syntax mv SOURCE DESTINATION

mv SOURCE... FOLDER

Description Moves a file to another location or moves multiple files to a
directory. If two arguments are given, a file is moved to its
destination. If more than two arguments are given, multiple files
are moved to a destination folder; in this case, the final argument
must be an existing folder.

Examples mv oldname.txt newname.txt

mv *.txt myfolder

mvdir
Name mvdir moves (renames) a directory.

Syntax mvdir SOURCE DESTINATION

Description Moves a directory. If the destination directory already exists, the
source directory is placed inside the destination directory.

Example mvdir source_dir target_dir

pack
Name pack creates, extracts, or displays an Aestiva pack file.

Syntax pack [-p “FILE...”] [-b BASE_DIRECTORY] [-n]
[-c] TARGET FILE/DIR...

pack -x FILE... [-f “FILE...”] [-b BASE_DIRECTORY]
ack -l FILE...

112 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 112

Description To create a pack file, the target pack file must be specified. If the
file exists, use the -c option to overwrite. The arguments
following the target file are the files and directories to be packed;
any directories given will be recursively packed. Full or relative
pathnames are allowed. By default the BASE_DIRECTORY is the
current working directory unless otherwise specified by the -b
option. All files to be packed must exist somewhere within the
BASE_DIRECTORY. To specify protected files use the -p option
followed by a space-delimited list of the files to be protected. If
the list contains more than one file, the entire list must be
wrapped in quotes. All pathnames to the protected files must be
relative to the given base directory (cwd by default).

To extract (unpack) a pack file use the -x option followed by the
pack filename. By default, the pack file is extracted to the current
working directory unless otherwise specified by the -b option. To
extract only specified files, use the -p option followed by a list of
files to be extracted. The list of files must be space-delimited and
wrapped in quotes.

To view the contents of an existing pack file, use the -l option.

Options -c TARGET creates a pack file and forces the overwrite of
TARGET if it already exists.

-p “FILE...” protects the specified files (for packing only).

-b BASE_DIRECTORY sets the base directory (cwd by default) for
extraction or packing.

-n provides no compression (for packing only).

-l lists files embedded in a given pack file.

-x extracts.

-f “FILE...” extracts only the specified files.

Examples pack myfile.pak * packs all files and folders (recursively) in
the current working directory into myfile.pak.

pack -c existingfile.pak *.html somedirectory packs all
.html files in the cwd and all files in somedirectory and
overwrites existingfile.pak.

pack /pak/new.pak mydir -p “mydir/settings.txt

Appendix: B 113

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 113

mydir/config” packs mydir into /pak/new.pak, protects
settings.txt and config; the protected files are given
pathnames relative to the current working directory
(basedir=cwd by default).

pack -n calc.pak -b /mycalc /mycalc/* -p
“protectme.txt metoo.txt” turns compression off. The base
directory is set to /mycalc. This packs all files within mycalc and
protects protectme.txt and metoo.txt (note pathnames relative
to the base dir).

pack -x myfile.pak extracts myfile.pak to the current
working directory.

pack -x myfile.pak -b mydir extracts myfile.pak to mydir.

pack -l myfile.pak lists the embedded files in the existing
pack file, myfile.pak.

password
Name password redefines the Aestiva system password.

Description Sets the password used at the Aestiva HTML/OS login page. If
the new password contains spaces, it must be wrapped in quotes.
The password must be entered twice on the command line for
confirmation.

Examples password newpass newpass

password “my newpass” “my newpass”

put
Name put uploads a file to the server.

Syntax put [-u URL] DESTINATION

Options -u URL in lieu of the pop-up window, a file is transferred to the
server from the given URL.

-l converts filename to lowercase.

Description By default, a pop-up window appears which prompts for a local
file. After the upload has been initiated, the window must be left
open until the file has been uploaded. If the -u option is used, a
file is transferred directly to the server destination file from the

114 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 114

given URL.

Examples put my_filename

put -u www.latimes.com latcopy.html
put -u www.anyware.com/mydownloads/asetup.cgi
asetup.cgi

pwd
Name pwd prints the working directory.

Description The pwd command prints the current working directory to the
screen.

Example pwd

rm
Name rm removes files or directories.

Syntax rm FILE...

Description Removes files or directories. Nonempty directories may not be
removed (use rmdir -r for nonempty directories).

Examples rm myfile.txt

rm */*.html

rmdir
Name rmdir deletes a directory.

Syntax rmdir [-r] DIRECTORY...

Options -r recursively deletes a nonempty directory.

Warning: Using rmdir -r permanently and completely deletes all
data in the given directories. No prompts are given. Use with care.

Description The rmdir command deletes the directories you supply as arguments.

Examples rmdir dir1 dir2 dir3/dir4

rmdir -r my_unwanted_dir

run
Name run runs/displays an HTML document.

Appendix: B 115

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 115

Syntax run [-h] [FILENAME...] or [-u URL...]

Options -h forces a local public file to run Aestiva tags.

-u runs URLs,

Description Displays an HTML document in a pop-up window. The document
may be on the Web or on the local server. By default, local public
documents that are not scrambled will not run HTML/OS tags.
Local private documents that are scrambled will run
HTML/OS tags. If the document is in the public folder, use the -h
option to force it to run HTML/OS tags.

Examples run start.html index.html

run -u www.yahoo.com www.aestiva.com
run -h mypublicfile.html

set
Name set changes Aestiva shell system settings.

Syntax set [PARAMETER VALUE]

Description If no arguments are given, then the current settings are displayed.
Otherwise the first argument should be the parameter name and
the second its new value. Parameter (values) descriptions include
the following:

autoscroll (off/on) toggles scrolling of top frame. Note: this
causes some Macintosh browsers to fail.

backgroundcolor (color-name) sets the background color. Use a
word like “blue” or use a hex value like #ccddee.

fontface (font-name) sets the font face. It is recommended that
a fixed-width font face, such as Courier, be used. Make sure that
you enclose in double quotes any font names containing spaces.

fontsize (1-7) Sets the font size.

inputcolor (color-name) sets the color of the shell prompt and
user input.

inputsize (integer) sets the size of the shell input box.

outputcolor (color-name) sets the color of shell output.

scrollbuffer (number) sets the number of lines at which the

116 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 116

shell truncates old output. If a number larger than the number of
lines that fit on the screen is used, autoscroll should be set to on.

showbuttons (off/on) toggles the display of the Help and
Desktop buttons.

Examples set

set autoscroll on
set inputcolor red

sort
Name sort sorts lines of text.

Syntax sort [OPTIONS] [FILE]

Options -k COLUMN sorts on column number COLUMN as split on spaces.

-n sorts numerically.

-r reverses the sort.

Description Sorts lines of text. Default sort is on column 1, alphabetically.
Columns are split on spaces. sort accepts piped input.

Examples ls | sort -k 2 sorts output of ls alphabetically on column 2.

sort myfile -nrk 4 sorts myfile in reverse numerical order on
column 4.

version
Name version displays the Aestiva Shell version information.

Description Execute this command to view the version number of the Shell,
the credits, and copyright information.

Example version

view
Name view displays an image file in a pop-up window.

Syntax view FILE...

Description Opens a new pop-up window with an image file (.gif, .jpg, and
so on) for each file argument.

Appendix: B 117

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 117

Examples view *.gif

view myimage.jpg

wc
Name wc counts the words and lines in a document.

Syntax wc FILE...

Description Counts the number of words (spaces) and lines (line breaks) in a
document.

Examples wc myfile

wc *.txt
cat * | wc

118 Learning the Web Shell

pablo_appendix_b.qxd 11/1/04 11:24 AM Page 118

NOTE: Boldface numbers
indicate illustrations or code
listing; t indicates a table.

A
Advanced Web Sites Made Easy,

xiv, 83
Aestiva Web site, 97-98
alias command, 102, 104
aliasing, 101
arguments for Web shell

commands, 4, 25
arrays in HTML/OS, 87-88, 88
arrow keys to recall commands,

38-39
ASP, xiv
asterisk wildcard, 22-24, 101

B
background color setting, 49
bound switches, 84, 92-94
browsers, x-xi
buffer (scrollbuffer) settings, 50

C
cat (view contents of text file)

command in, 26, 27-29, 28,
102, 104

cd (change directory) command
in, 7-8, 11-12, 102, 105

cdl (change directory and list
contents) command, 14, 102,

105
clear command, 104
cleardb command, 102, 105
columns, sort command and, 62
command API, testing, 86-87
command history, 36-38, 102

accessing prior commands
using, 36-37

arrow keys to recall
commands in, 38-39

exclamation operator to recall
commands in, 38, 102

history (view history)
command in, 37

relative vs. absolute
command numbers in, 38

reset of, on new session, 37
command line

input box in, 4
running applications and, 44-

45, 44
command prompt, 35-36
commands for Web shell, 65-

82. See also Web page
creation
aliasing in, 101
arguments for Web shell

commands, 4, 25
arrow keys to recall, 38-39
custom. See custom

command creation, 83

exclamation operator to
recall, 38, 102

history (history command) of,
37

multiple command execution
in, 100-102
piping for, 100
redirection for, 100

relative vs. absolute
command numbers in, 38

switches for Web shell
commands, 4, 17, 25, 84,
89-94

syntax for, 99-100, 99
wildcard use in, 22-24, 101

connection speed, -u option for
put command, 71

cp (copy file) command, 18-20,
102, 105-106

cpdir (copy directory)
command, 18, 102, 106

Cprime.NET, xi
creating a file, 41
current working directory

defined, 7, 11
custom command creation, 83-

96
= and + symbols in

HTML/OS and, 87
arrays in HTML/OS and, 87-

88, 88

119

Index

Pablos_index.qxd 11/1/04 11:57 AM Page 119

bound switches in, 84, 92-94
command API in, testing, 86-

87
command file creation for,

84-85
design in, 84
functionality for new

command in, 87-89
functions in HTML/OS and,

89
piped I/O support in, 94-96
switches for user control in,

89-94
true/false in HTML/OS and,

89
variables in HTML/OS and,

86

D
date command, 102, 106
datestamps for files, 6
Desktop button, 4
desktop command, 102, 106
diff command, 102, 106-107
directories, 10, 14-18

absolute or full path to
directories in, 10

color (workingdircolor)
settings, 50

copying with cpdir command,
18

creating with mkdir
command, 15-16

dot (.) and dot-dot (..)
directories, 12-14

ls (list current directory
contents) command in, 5-7

moving with mvdir
command, 18

pseudo directories in. See dot
(.) and dot-dot (..)
directories, 12

relative path to directories in,

10, 12
removing with rmdir

command, 17
root directory in, 10
tree organization of

parent/child directories in,
10

wildcard use in commands
for, 22-24

do command, 103, 107
dot (.) and dot-dot (..)

directories, 12-14
downloading files, 32-34
downloading HTML/OS, 1-3, 2
dynamic pages, 45-46, 45

running, 45-46, 45

E
edit (start editor window)

command for, 39-41, 39, 103,
107

editing files, xi, 39-44
creating a file in, 41
edit (start editor window)

command for, 39-41, 39
HTML files and, 43-44
new file command in, 40
preference setting for, 51-52,

51
running files from within

editor and, 41-43, 42
saving changes in, 40
URLs in, 43

encapsulating and deploying
Web applications, 74-82
installation file creation using

pack command, 75-76, 76t
listing embedded pack files

with pack –l command, 78-
80

packing pages and images
using pack command, 77-
78

unpacking pack files with
pack –x command, 80-81

equal sign (=) symbol in
HTML/OS, 87

exclamation operator to recall
commands, 38, 102

exit command, 103, 108
extensions for filenames, 10

F
file management, xi, 9-34. See

also editing files
absolute or full path to

directories in, 10
cat (view contents of text file)

command in, 26, 27-29, 28
cd (change directory)

command in, 7-8, 11-12
cdl (change directory and list

contents) command in, 14
cp (copy file) command in,

18-20
creating a file for, 41
current working directory

defined in, 7, 11
datastamps for files in, 6
directories in, 14-18

copying with cpdir
command, 18

creating with mkdir
command, 15-16

moving with mvdir
command, 18

removing with rmdir
command, 17

wildcard use in commands
for, 22-24

dot (.) and dot-dot (..)
directories, 12-14

downloading files in, 32-34
extensions for filenames in,

10
file system support in, 9-10

120 Learning the Web Shell

Pablos_index.qxd 11/1/04 11:57 AM Page 120

filenames in, 7, 9-10
find (find a file) command in,

25-26
findtxt (find text contents of

file) command in, 26, 29-
30

fixfile (move file to
Public/Private area)
command in, 31

fixprivate (move file to
Private area) command in,
32

fixpublic (move file to Public
area) command in, 32

folders or directories in. See
also directories, 10

FTP file transfers and, 32
get (download file) command

in, 34
H2O file attributes and, 30-32
ls (list current directory

contents) command in, 5-7,
5

MIRROR files in, 6, 30-32
mv (move file) command in,

21-22
PRIVATE files in, 6, 30-32
pseudo directories in. See dot

(.) and dot-dot (..)
directories

PUBLIC files in, 6, 30-32
put (upload file) command in,

33, 33, 79-72, 70, 71
relative path to directories in,

10, 12
rm (remove file) command in,

20-21
root directory in, 10
tree organization of

parent/child directories in,
10

uploading files in, 32-34
wc (word count) command in,

63
wildcard use in commands

for, 22-24
filenames, 7, filenames, 9-10
find (find a file) command, 25-

26, 103, 108
findtxt (find text contents of

file) command, 26, 29-30
findtxt command, 103, 108-109
fixfile (move file to

Public/Private area) command
in, 31, 103, 109

fixprivate (move file to Private
area) command, 32, 103, 109

fixpublic (move file to Public
area) command in, 32, 103,
109-110

font type and size
(fontface/fontsize) settings,
49-50

FTP file transfers, 32, 69
functions in HTML/OS, 89

G
get (download file) command,

34, 103, 110
greater than (>) redirection

operator, 56-57
greater than (>>)redirection

operator, 57-59
grep command, 55, 63-64, 103,

110

H
H2O, x-xi, xiii-xiv, 1

file management and, 30-32
HTML/OS and, 1
login screen for, 2
web site for, 98

Help button, 4, 8
help command, 103
history (view history) command,

37, 103, 110-111

history. See command history;
history command

hosting providers, xii, 1
HTML

book on, 98
document creation in, 66-68,

66, 67
dynamic pages in, 45-46, 45
editing files and, 43-44

HTML/OS, x, xi, xiii-xiv, 1, 97
= and + symbols in

HTML/OS and, 87
arrays in, 87-88, 88
downloading a copy of, 1-3, 2
dynamic pages in, 45-46, 45
file management and, 30-32
functions in, 89
H2O and, 1
login screen for, 2, 2
resources for, 97
true/false in, 89
variables in, 86

I
image tags added to Web page,

73-74, 73
images, 46-47

adding to Web server, 68-72
connection speed and, -u

option for put command,
71

FTP file transfers for, 69
image tags added to, 73-74,

73
put (upload file) command

for, 79-72, 70, 71
view (viewing images)

command in, 46-47, 73
installation file creation using

pack command, 75-76, 76t
integrated development

environments (IDEs), vii

J K

Index 121

Pablos_index.qxd 11/1/04 11:57 AM Page 121

Java Server Pages (JSP), xi, xiv

L
logout command, 8
ls (list current directory

contents) command in, 5-7,
103, 111

M
man files (Help manual), 8, 99
man/help commands, 8
MIRROR files, 6, 30-32
mkdir (make directory)

command, 15-16, 103, 112
mouse feature settings, 52-53
mov command, 103
multiple command execution,

100-102. See also piping;
redirection

mv (move file) command in, 21-
22, 112

mvdir (move directory)
command, 18, 103, 112

N
new file command, 40

O
opening screen for Web shell, 2,

3

P Q
pack command, 103, 112-114

installation file creation
using, 75-76, 76

listing embedded pack files
with–l option, 78-80

options for, 76, 76t
packing pages and images

using pack command, 77-
78

unpacking pack files with–x
option, 80-81

packing. See encapsulating and
deploying Web applications

password command, 103, 114
Perl, x, xi, xiv
PHP, x, xi, xiv
pipe (|) operator in, 59-60
piping, 55, 94-96, 100

command design using, 94-96
grep command for, 55, 63-64
multiple pipes, 64
pipe (|) operator in, 59-60
sort command for, 55, 60-62
wc (word count) command in,

63
platform support, x
plus sign (+) symbol in

HTML/OS, 87
portability of Web applications,

81-82
PRIVATE files, 6, 30-32
prompt, command prompt, 35-

36
pseudo directories. See dot (.)

and dot-dot (..) directories
PUBLIC files, 6, 30-32
put (upload file) command, 33,

33, 79-72, 70, 71, 103, 114-
115
connection speed and, -u

option for, 71
pwd command, 103, 115

R
redirection, 55-64, 55, 100

greater than (>) operator for,
56-57

greater than (>>) double
operator for, 57-59

piping in, 55
grep command for, 63-64
multiple pipes in, 64
pipe (|) operator in, 59-60
sort command for, 60-62

wc (word count) command
in, 63

relative path to directories, 10,
12

relative vs. absolute command
numbers, 38

resources for HTML/OS, 97
rm (remove file) command, 20-

21, 103, 115
rmdir (remove directory)

command, 17, 103, 115
root directory, 10
run command, 103, 115-116
running applications, 44-46

command line for, 44-45
dynamic pages in, 45-46, 45

running files from within editor,
41-43, 42

S
sandboxes, x, xi
saving changes in edited files,

40
scripting languages, xi
scroll parameters (autoscroll)

settings, 49
searches, findtxt (find text

contents of file) command in,
26, 29-30

sessions in Web shell, 37
set (preference setting)

command, 47-50, 103, 116-
117

shell environment, 35-53
background color setting in,

49
buffer (scrollbuffer) settings

in, 50
command history in, 36-38,

102
command prompt in, 35-36
directory color

(workingdircolor) settings

122 Learning the Web Shell

Pablos_index.qxd 11/1/04 11:57 AM Page 122

in, 50
editing files in, 39-44

creating a file in, 41
edit (start editor window)

command for, 39-41, 39
HTML files and, 43-44
new file command in, 40
preference setting for, 51-

52, 51
running files from within

editor and, 41-43, 42
saving changes in, 40
URLs in, 43

editor preference setting, 51
font type and size

(fontface/fontsize) settings
in, 49-50

mouse feature settings in, 52-
53

relative vs. absolute
command numbers in, 38

running applications, 44-46
command line for, 44-45
dynamic pages in, 45-46,

45
scroll parameters (autoscroll)

settings in, 49
set (preference setting)

command in, 47-50
text color/size

(inputcolor/inputsize/output
color) settings in, 50

view (viewing images)
command in, 46-47, 73

window height (runheight)
settings in, 50

shell interfaces, viii-ix
Silverberg, D.M., xiv, 83
sort command, 55, 60-62, 103,

117
columns and, 62

switches for Web shell
commands, 4, 17, 25, 84, 89-

94
bound switches, 84, 92-94

syntax for Web shell
commands, 99-100

T
text color/size

(inputcolor/inputsize/outputco
lor) settings, 50

text editors, xi-xii
tree organization of parent/child

directories, 10
true/false in HTML/OS, 89

U
UNIX shell, x, 97
uploading files, 32-34
URLs, editing files and, 43
user interfaces (UIs), vii, 1

V
variables in HTML/OS, 86
version command, 103, 117
view (viewing images)

command, 46-47, 73, 103,
117-118

W X Y Z
wc (word count) command, 63,

103, 118
Web application development,

xi
Web computing, x
Web page creation, 65-82

checking work in, using view
command, 73

completed page example, 75
encapsulating and deploying

Web applications for, 74-82
installation file creation

using pack command,
75-76, 76t

listing embedded pack files

with pack –l command,
78-80

packing pages and images
using pack command,
77-78

portability of Web
applications for, 81-82

unpacking pack files with
pack –x command, 80-
81

HTML document creation for,
66-68, 66, 67

image tags, 73-74, 73
images added in, 68-72

connection speed and, -u
option for put command,
71

FTP file transfers for, 69
image tags added to, 73-74,

73
put (upload file) command

for, 79-72, 70, 71
view (viewing images)

command in, 73
portability of Web

applications for, 81-82
Web shell basics, ix-x, xiii-xiv,

3
command line input box for,

4
commands for, 4
Desktop button in, 4
exiting (logout), 8
Help button in, 4, 8
interface elements in, 4
opening screen for, 2, 3
sessions in, 37
web site for, 97

Web sites of interest, 97-98
wildcard use in commands, 22-

24, 101
window height (runheight)

settings, 50

Index 123

Pablos_index.qxd 11/1/04 11:57 AM Page 123

Pablos_index.qxd 11/1/04 11:57 AM Page 124

