
Useful Web Shell Commands

In this chapter, you create a simple Web page from the ground up and use some of the
commands that distinguish the Web shell from a traditional shell. These commands are
covered during the course of a tutorial consisting of creating a Web page, retrieving image
files from a remote source, and packaging the page and its related files into a single
installation file for deployment on any other Web shell system. The Web shell, being a
development and deployment environment, makes these aspects of Web development
simple.

This chapter begins by walking you through the creation of a Web page modeled on an
existing Web page at www.aestiva.com, which lists the operating systems on which you
can run the Web shell. After this Web page is completed, you learn how to add image files
to your Web server across the network using the Web shell’s file transfer commands and
then add these images to your Web page. When the page is completed, you package all of
these files into a single archive file that can be used to redeploy the Web page and all of its
images.

Creating a Simple Web Page that Lists Supported Platforms
In this chapter, you create a Web page modeled on an existing Web page on the Aestiva Web
site. The Web page will list all of the platforms on which the Web shell can be deployed.
There are three steps to completing this Web page. The first step is to create the HTML
document. The second step is to retrieve the image files from theAestiva server and put them
on yourWeb server. The last step is to add the image links to the HTMLpage and verify your
work. After the page is completed, you pack the files you created into an installation file for
deployment on other servers that use the Web shell’s application packing tool.

65

Chapter

55

Creating the HTML Document

First, you will need to create a directory where you will add your files. Call this directory
platforms to indicate that the document will relate to the platforms (operating systems) on
which the Web shell can run.

To create the directory, run the mkdir command with platforms as an argument.
Remember that mkdir, like many shell commands, requires a filename argument with
either an absolute or a relative path. If you are in the directory in which the new directory
will reside, you need to supply only a relative path, as in the following example:
/>mkdir platforms
/>cd platforms
/platforms/>

Now you have a directory to hold the data. You put the document and image files in this
directory. Use the edit command to create the new document:
/platforms/>edit index.html

When you run this command, the Web shell creates a new edit window in which you will
put the contents of the index.html file.

66 Learning the Web Shell

FFiigguurree 55..11 The original Web page at www.aestiva.com.

After issuing the preceding command, you should have an editor window in front of you
with a blank text area. You will put the HTML for the index.html page in this text area.

The page that you’re going to model yours on can be found on the Aestiva Web site. To see
the original page, go to www.aestiva.com and click any of the operating system icons at
the bottom of the page. See the page in Figure 5.1, which shows a part of this page. The
Web page you create lists the platforms on which you can run Aestiva, and by extension,
the Web shell.

The following is the primary HTML content retrieved from a page posted on the Aestiva
site in February 2004. Add it to the text area in the editor window:
<html>
<head>
<title>Web Shell — Supported Platforms</title>
</head>
<body>
<h3>Web Shell — Supported Platforms<h3>

Apple MacOS X
Berkeley Systems Design (BSD)
Hewlett Packard
Linux
Microsoft Windows
Sun Microsystems — Cobalt Servers
Sun Microsystems — Solaris-based Servers

</body>
</html>

After you finish typing the HTML into the text area, save the file by clicking the Save
button. The page reloads and at the top of the editor, the status message should read
something like the following, depending on the Web server’s time when you saved it:
/platforms/index.html FILE SAVED 9:41 AM

The next step is to check your work. Click the Run button to launch a new window with
your Web page as it will appear when rendered by your Web browser.

Chapter 5: Useful Web Shell Commands 67

When you click the Run button, you should see a newly opened page like that in Figure 5.2.
If you see a page like this, you have finished the first step in creating your example page.

The process that you just completed involved writing HTML code and saving it to a server
across the network, then viewing the HTML page on that server from your local machine.
The process of creating content on a remote server and then testing that content can be

deceptively easy in the Web shell because you don’t have to do any explicit networking
activity. The network is an integral part of the application environment.

In the next section, you explore some of the more useful aspects of the Web shell’s
networking features by explicitly transferring image files across the Internet and onto your
Web server. You will eventually add these image files to your platforms Web page.

Adding Images to the Web Server

HTML/OS’ version of this page at www.aestiva.com includes an image next to each
operating system. The next step is to add these images to your page. You could easily
reference their addresses on Aestiva’s Web site directly in the HTML document, thereby
causing any visitors to the page to retrieve the image files from Aestiva, but that would be

68 Learning the Web Shell

[Figure
05fig02.bmp]

FFiigguurree 55..22 The platforms Web page lists the supported platforms.

undesirable because you would be “stealing” bandwidth from somebody else’s server, and
you wouldn’t have control of the files you are linking to. Instead, you’ll have to add these
files to your server and reference them from the HTML document you just created,
index.html.

You could put the images directly inside of the platform’s directory, but it’s generally neater
to put images in their own directory. Create an images directory called images inside of the
platforms directory:
/platforms/>mkdir images

Now that you have a place to put your image files, you can transfer them from Aestiva’s
Web server to your Web server by using the put command.

Problems with Accessing Files via FTP

Historically, when developers wanted to move files around on the Web, they used File
Transfer Protocol (FTP), which is the most widely used way of transferring files on the
Internet. As the name indicates, FTP is not just an application; it’s an entire protocol,
distinct and independent of the protocol used by the Web, called Hyper Text Transfer
Protocol (HTTP). Part of what that means is that when you want to move a file with FTP,
your computer (the file destination computer) has to have an FTP client application running
(often confusingly called FTP), and the server (the file source computer) has to have a FTP
server running as well. A Web server won’t necessarily have an FTP server installed, and if
it is installed, it may not be configured to suit your needs. If you want to get a file from the
server, you have to log in with a username and password. After you are logged in, you have
to have permission to go into the directory that has the relevant files.

Using the put Command to Upload Web Files

The Web shell uses the put command as a substitute for FTP. It won’t always be able to
take the place of FTP, because the files you want may be in a directory not served by the
remote computer’s Web server. In that case, you can still use FTP to download the remote
file to your local computer and use the put command from there to upload the downloaded
files to the Web server. Otherwise, when it does serve your needs, the Web shell’s put
command is much more convenient and better integrated than FTP.

Chapter 5: Useful Web Shell Commands 69

In this example, you copy the image files that you will reference from the index.html
page from the Aestiva’s Web server to your Web server. You do this by transferring the files
from the source server to the destination server without using your personal computer as an
intermediary. You could, on the other hand, download files to your personal computer and
upload them, also using the put command, but that would require an undue amount of work
and network traffic, because you would be effectively transferring files from Aestiva’s Web
server to your local machine and then transferring the file again to your Web server, as
illustrated in Figure 5.3.

Conveniently, the put command supports copying files from one Web server to another,
without requiring that you use your client as an intermediary. To copy a file from a Web
location to your Web server, use the –u switch (you can think of the “u” as in URL).

The general form of the put command is the following:
put [-u URL] FILENAME

When you don’t use the –u option, the target filename is optional because it is inferred from
the source filename. When you do use the –u option, the target filename is required.
For example, to copy the image file at:
http://www.aestiva.com/aestiva/images/partners/mac_logo.gif
to a local file called /platforms/images/mac_logo.gif, run the following command:

70 Learning the Web Shell

FFiigguurree 55..33 The put command can either upload files from your personal computer or transfer
files from a Web server.

www.aestiva.com

www.aestiva.com

Web Shell Server

Web Shell Server

Local
Computer

Using put -u to transfer files from server to server

Using put in default mode

/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/mac_logo.gif
mac_logo.gif

This fetches the file located at the specified URL and creates a copy on your Web server named
mac_logo.gif. See the accompanying note, “The put Command and Connection Speed.”

The put Command and Connection Speed
When you run the put command with the –u option, the Web shell makes an HTTP request
from the Web server and writes the contents of the resulting file to the server’s file system.
Your client computer requests only that the transaction take place; it has no role in the
network transaction. That means that if the file were large, and if you were on a computer
with a slow Internet connection, the transfer could be fast, depending on the connection
between the shell Web server and the source Web server. Typically, the connection between
one Web server and another is quite fast, so these transactions are efficient, regardless of
the speed of the Web connection of your personal computer.

To view the newly created image file, run the view command with the filename as its
argument:
/platforms/images/>view mac_logo.gif

You should see the image appear in a new Web browser window, as shown in Figure 5.4.

Chapter 5: Useful Web Shell Commands 71

Figure 5.4 mac_logo.gif in a view window.

Now that you have the Macintosh logo on your Web server, you have to add the rest of the
images. Run the following commands to transfer the rest of the files:
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/apple_logo.gif
apple_logo.gif
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/bsd.gif bsd.gif
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/digital _logo.gif
digital_logo.gif
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/ht_logo.gif
ht_logo.gif
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/linux.gif linux.gif
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/sun_logo.gif
sun_logo.gif

Because typing all of the preceding commands would be tedious and subject to costly typos,
this is a good time to use the command history feature of the Web shell. The Web shell
remembers your previous commands and lets you recall these commands in several ways.
(For more details on accessing the command history, refer to Chapter 3, “The Shell
Environment.”) The most convenient way to recall a command is by using the up arrow on
your keyboard while the cursor is in the command input box. (This feature only works in
Internet Explorer, so if you are running another browser, you have to cut and paste your
commands into the input box to save typing.)

If you are running IE, press the up arrow to recall the first put command that you ran:
/platforms/images/>put –u
http://www.aestiva.com/aestiva/images/partners/mac_logo.gif logo.gif

Then you edit that command so it refers to the second file in the example,
apple_logo.gif. The only text values you have to change are mac to apple in the URL
and the filename. You can use the same technique to generate all the remaining put
commands.

72 Learning the Web Shell

Checking Your Work

When you are done putting all the image files onto the server, view the results by running
the view command with a wildcard file argument:
/platforms/images/>view *

Because the * character matches all files in the current working directory, the view
command runs against all of the filenames of the images you just uploaded. You should see
a window that displays all the matching images and their filenames, as shown in Figure 5.5.

Adding the Image Tags to Your Web Page

Now that you have the necessary images on the Web server and have demonstrated with the
view command that they are accessible from within a Web page, you have to add them to

the platform’s Web page. If you don’t have the editor window open for index.html, open
one now with the edit command:
/platforms/>edit index.html

Then add the image tags so that the HTML looks something like this:
<html>

Chapter 5: Useful Web Shell Commands 73

FFiigguurree 55..55 Viewing all the platform images.

<head>
<title>Web Shell — Supported Platforms</title>
</head>
<body>
<h3>Web Shell — Supported Platforms<h3>

 Apple MacOS X
 Apple MacOS 7-9
 Berkeley Systems Design (BSD)
 Compaq Alpha Servers
(formerly DEC Alpha)
 Hewlett Packard
 Linux
 Microsoft Windows
 SGI (Silicon Graphics)
 Sun Microsystems — Cobalt
Servers
 Sun Microsystems — Solaris-based
Servers

</body>
</html>

Then run the page to verify your work. Your page should look something like the one in
Figure 5.6.

The next step is to package this Web page with its image files into a single archive file that
can be deployed on any Web shell system.

Encapsulating and Deploying Web Applications
Often, when you do Web development, you create and verify a Web-based system in a
development environment, either on the same server as the deployment environment but in
a different directory, or on a different server altogether. In any case, you will often have to
move an entire Web application, with source code, HTML documents, code libraries,

74 Learning the Web Shell

images, and other files, as well as the directory structure that contains and organizes these
files, to the environment that will host the deployed application. In the next section, you
package the platforms page and its image files into one file and deploy this mini-application
in a different directory on your server.

Creating an Installation File with the pack Command

The pack command bundles the files in a Web application, compresses and archives the
files into one installation file, and embeds directory structure information so that the
application can be unpacked to create a clone of the original.

To pack files, invoke the pack command with the name of the archive as its first argument.
The following arguments are considered the file sources from which the pack command
draws to create the archive file.

• To create a pack file, you must specify the TARGET pack file. If the file exists, use
the -c option to overwrite it. The arguments following the TARGET file are the
files and directories to be packed; any directories given will be recursively
packed. Full or relative pathnames are allowed.

• By default the BASE_DIRECTORY is the current working directory unless
otherwise specified by the -b option. All files to be packed must exist somewhere

Chapter 5: Useful Web Shell Commands 75

FFiigguurree 55..66 The completed platforms Web page now contains all the image files you inserted.

within the BASE_DIRECTORY.
• To specify protected files, use the -p option followed by a space-delimited list of

the files to be protected. If the list contains more than one file, the entire list must
be wrapped in quotes. All pathnames to the protected files must be relative to the
given base directory (cwd by default).
To extract (unpack) a pack file, use the -x option followed by the pack filename.
By default, the pack file will be extracted to the current working directory unless
otherwise specified by the -b option. To extract only specified files, use the -p
option followed by a list of files to be extracted. The list of files must be space-
delimited and wrapped in quotes. To view the contents of an existing pack file,
use the -l option.
Table 5.1 gives a list of the available options.

The pack command is one of the more feature-rich commands supported by the Web shell,
but for typical use, it is quite simple.

76 Learning the Web Shell

Option Function
-c c TARGET Creates a pack file and forces the overwriting of TARGET if it

already exists

-p “FILE...” Protects the specified files (for packing only)
-b BASE_DIRECTORY Set the base directory (cwd by default) for extraction or

packing

-n Sets no compression (for packing only)

-l Lists files embedded in given pack file
-x Extracts the given pack file -f “FILE...” Extracts only the

specified files
TTaabbllee 55..11 Available Options for the pack Command.

Packing the Platforms Page and Images
This section shows you how to use the pack command to create an installation file that can
be used to redeploy the platforms page you just created. You pack up the HTML file as well
as all of the images into one file called platforms.pak. The following files are associated
with the platforms page and are going to make up the contents of the pack archive file:
/platforms/>ls *
FILE PRIVATE 803 05/04/03 15:10:24 index.html
images:
FILE PUBLIC 1040 05/04/03 23:26:19 apple_logo.gif
FILE PUBLIC 1690 05/04/03 23:26:23 bsd.gif
FILE PUBLIC 1520 05/04/03 23:26:38 cobalt_logo.gif
FILE PUBLIC 1874 05/04/03 23:26:42 digital_logo.gif
FILE PUBLIC 1194 05/04/03 23:26:59 hp_logo.gif
FILE PUBLIC 1844 05/04/03 23:26:50 linux.gif
FILE PUBLIC 1289 05/04/03 23:26:55 mac_logo.gif
FILE PUBLIC 698 05/04/03 23:27:05 sgi_logonu.gif
FILE PUBLIC 481 05/04/03 23:27:09 sun_logo.gif
FILE PUBLIC 1768 05/04/03 23:27:13 windows.gif

You could pack these files by specifying them individually as arguments supplied to the
pack command; but it would be much easier to specify their directory. The following
command packs all of the files in the previous list (take note of the current working
directory, /):
/>pack platforms.pak platforms
target file: /platforms.pak
compression: on
archived files:
platforms/images/linux.gif
platforms/images/bsd.gif
platforms/images/sgi_logonu.gif
platforms/images/windows.gif
platforms/images/sun_logo.gif
platforms/images/hp_logo.gif
platforms/images/cobalt_logo.gif
platforms/images/apple_logo.gif
platforms/images/digital_logo.gif

Chapter 5: Useful Web Shell Commands 77

platforms/images/mac_logo.gif
platforms/index.html

The pack command, when used in this way, requires two arguments. The first argument, in
the preceding example, platforms.pak, is the name of the archive file you are about to
create. The following arguments, in the preceding case one argument, platforms, are the
names of the files and directories that you want to include in your archive file. When you
run the pack command, it lists the individual files it added to the archive file. In the
preceding example, the files added to the platforms.pak archive file are the files required
to run the platforms page.

In the previous example, when the pack command runs, you move out of the directory that
contains the files to pack and reference the base directory of the Web application from there.
This is the simplest method for packing an application and should serve most of your needs.
In general, move into the directory immediately above the directory that contains the Web
application code (if you consider the root directory to be at the top of the file hierarchy) and
give pack the name of that container directory as its only source file argument. The pack
command adds all files and folders as deep as the file tree goes from that container
directory.

Listing Embedded Pack Files with pack -l
At this point if you were to give platforms.pak to another developer, he or she could
examine the contents of the .pak file by running the pack command with the -l option.
Run the pack command with the -l option to view the contents of the .pak file you just
created, platforms.pak:
/>pack –l platforms.pak
platforms.pak:
platforms/images/linux.gif CPUBLIC 1850
platforms/images/bsd.gif CPUBLIC 1696
platforms/images/sgi_logonu.gif CPUBLIC 704
platforms/images/windows.gif CPUBLIC 1774
platforms/images/sun_logo.gif CPUBLIC 487
platforms/images/hp_logo.gif CPUBLIC 1200
platforms/images/cobalt_logo.gif CPUBLIC 1259
platforms/images/apple_logo.gif CPUBLIC 695
platforms/images/digital_logo.gif CPUBLIC 1880
platforms/images/mac_logo.gif CPUBLIC 1254
platforms/index.html CPRIVATE 668

78 Learning the Web Shell

The resulting list displays the contents of the embedded files. The first column lists the file
name, the second column lists the attribute of the file, and the third column lists the
uncompressed size of the file.

These details tell you a lot about which files are contained in the .pak file, and how the
archive will be installed. The first column, for example tells you that when the installation
is performed, a platforms directory will be created with an images directory underneath.

Note that the file paths in the first column are relative to the root directory. In general, when
you pack files, they will be assigned a path relative to the base directory at the time of the
creation of the pack file. By default, the base directory is the current working directory at
the time of creation. You can override this by using the –b switch and specifying a base
directory other than the current working directory.

The second column tells you whether the files are public or private. (Refer to Chapter 2,
“File Management.” for more information about private versus public files.) When the
archive is extracted, the files listed will be created on the public or private side based on
the attributes listed when you run pack -l. These are the same attributes the files had when
the archive was created. The C character before the public/private indication, tells you that
the file is compressed in the archive. The pack command compresses files by default. Use
the –n switch to turn compression off.

If, for example, you want the archive to appear like the following version, you specify that
the base directory be the platforms directory in the following manner:
/>pack platforms.pak –b platforms platforms
target file: /platforms.pak
compression: on
archived files:
images/linux.gif
images/bsd.gif
images/sgi_logonu.gif
images/windows.gif
images/sun_logo.gif
images/hp_logo.gif
images/cobalt_logo.gif
images/apple_logo.gif
images/digital_logo.gif
images/mac_logo.gif
index.html

Chapter 5: Useful Web Shell Commands 79

In the preceding example, the argument immediately after the –b switch overrides the
default base directory, the current working directory. It might look funny to see platforms
platforms on the command line, but in this case, the first platforms binds to the –b
switch and the second platforms specifies the source directory. When you check the
contents of the pack file, it is evident the paths are relative to platforms:
/>pack –l platforms.pak
platforms.pak:
images/linux.gif CPUBLIC 1850
images/bsd.gif CPUBLIC 1696
images/sgi_logonu.gif CPUBLIC 704
images/windows.gif CPUBLIC 1774
images/sun_logo.gif CPUBLIC 487
images/hp_logo.gif CPUBLIC 1200
images/cobalt_logo.gif CPUBLIC 1259
images/apple_logo.gif CPUBLIC 695
images/digital_logo.gif CPUBLIC 1880
images/mac_logo.gif CPUBLIC 1254
index.html CPRIVATE 668

The importance of the paths of the file contents in a pack file arises at installation time.
When you unpack a pack file, it gets unpacked into the paths specified by the pack archive.
In the preceding case, when you unpack the platforms.pak file it will, by default, create
the index.html file in the current working directory, create an images directory relative
to the current working directory, and then unpack the remaining image files into that
directory.

Unpacking a Pack File
To test unpacking platforms.pak, create a new directory called /deployment with the
mkdir command then move into that directory with the cd command:
/>mkdir deployment
/>cd deployment

Run the pack command with the –x argument to tell pack to unpack the file at the given
file path, as in the following example:
/deployment/>pack –x /platforms.pak
/platforms.pak – OK

80 Learning the Web Shell

Keep in mind that the platforms.pak file is not in the current working directory anymore
because you are in the deployment directory. Use a full path to specify the location of the
platforms.pak file.

The output of the unpacking process is a status message like the OK message in the
preceding example. This tells you whether the unpacking process was successful. You can
tell the pack command to give you more information by using the –v switch to indicate
verbose mode. The pack command in verbose mode will display the names of the files it
unpacked.

Now that the platforms pack file has successfully unpacked, list the contents of the
current working directory to verify the success of the installation:
/deployment/>ls
DIR MIRROR 360 05/06/03 16:46:41 images
FILE PRIVATE 803 05/06/03 16:46:41 index.html
/deployment/>

Now you can run the index.html file with the run command.
/deployment/>run index.html

You should get a Web page exactly like the version you created by hand in the platforms
directory. Now you have an exact copy of the platforms page as well as all of its images.

If you create an entire Web site with thousands of files, the deployment process is just as
simple, provided that the entire application respects the rules of portability. When writing
HTML files, the primary rule for portability is referring to embedded content, such as
images with relative paths when you write HTML. You should avoid, when possible, using
full paths in your HREF, IMG, and other tags that refer to files on your server. This ensures
that a pack file like the one you created in this chapter will be portable across different
directories on the same system or on different domain names.

Writing Web Applications for Portability
In the content of the platforms page, the image tags referred to files with relative paths,
which allowed you to redeploy the page in another directory without any problems. If
index.html contains references to its image files with full paths, the page references
images in the source code area, /platforms. Any alteration to the development file system
results in an alteration of the production file system.

The following code is an example of a less desirable version of index.html. Note that the
image files are referenced absolutely:

Chapter 5: Useful Web Shell Commands 81

<html>
<head>
<title>Web Shell — Supported Platforms</title>
</head>
<body>
<h3>Web Shell — Supported Platforms<h3>

 Apple MacOS X
 Apple MacOS 7-9
 Berkeley Systems Design
(BSD)
 Compaq Alpha
Servers (formerly DEC Alpha)
 Hewlett Packard
 Linux
 Microsoft Windows
 SGI (Silicon
Graphics)
 Sun Microsystems —
Cobalt Servers
 Sun Microsystems —
Solaris-based Servers

</body>
</html>

If you try to redeploy the preceding file and delete the original images directory, the page
will not work. In general, keep all paths relative in your application to avoid problems when
you deploy the application.

Summary
The functionality outlined in this chapter sets the Web shell apart from other shells, because
the Web shell supports the ability to move files across the Web from server to server and
create and deploy Web-based applications using a powerful file archiving and unarchiving
functionality. You can create, manage, and deploy Web-based applications with relative
ease and without having to resort to third-party tools.

82 Learning the Web Shell

